Advances in Consumer Research
Issue 4 : 1327-1340
Original Article
An Anxiety-Based Multi-Attribute Recommender System Using Interval-Valued Intuitionistic Fuzzy Sets
1
Indian Institute of Management Jammu
Abstract

Numerous studies indicate that current recommender systems primarily focus on customer satisfaction, dissatisfaction, and personalized preferences when making product recommendations. However, these systems often neglect the anxiety customers may feel when choosing between similar products. This unease can result in poor decision-making and suboptimal choices. The ideal scenario for customers is to select a product without experiencing anxiety. Our study addresses this gap by incorporating "tranquillity" (or anxiety) as a behavioral factor in the recommendation process. Failing to consider these intuitive customer judgments can lead to the selection of inappropriate products. We propose a unified personalized recommendation approach using interval- valued intuitionistic fuzzy sets, which accounts for uncertain, conflicting criteria and customer behavior. This methodology identifies the best alternative by considering the customer's flexible preferences through an averaging operator. We compare the effectiveness of our approach with existing studies and demonstrate its applicability using a car purchase example in e-commerce

Keywords
Recommended Articles
Research Article
Employees’ Perceptions of Job Evaluation Practices: Evidence from the Textile Industry in Uttar Pradesh
Published: 30/09/2025
Research Article
Publishing Of Reports Via Camunda Workflow Orchestration for A Financial Institute
Published: 30/09/2025
Research Article
E-Commerce vs. Traditional Retail: A Data-Driven Comparison of Profitability and Sustainability
Published: 30/09/2025
Research Article
Strategic Patient-Centric Brand Management in Pharma: Transforming Value Creation through VRIO Analysis
Published: 30/08/2025
Loading Image...
Volume 2, Issue 4
Citations
123 Views
67 Downloads
Share this article
© Copyright Advances in Consumer Research