Advances in Consumer Research
Issue:6 : 2021-2028
Original Article
Integrating Artificial Intelligence, Data Analytics, and Decision Modelling for Sustainable Business Strategy: A Multi-Criteria Engineering Approach
 ,
 ,
 ,
 ,
1
Assistant Professor, Artificial Intelligence and Data Science, Dr.N.G.P. Institute of Technology Coimbatore, Tamil Nadu,
2
Department of Computer Science & Engineering, CSMSS Chh. Shahu College of Engineering, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India – 431011,
3
Professor and Head, Department of Management Studies, Dr.N.G.P Institute of Technology, Commerce, D.L. Patel Commerce College,
4
Assistant Professor, CSE, VSB college of Engineering Technical Campus, Coimbatore, India
5
Assistant Dean - Students Welfare, Department of Students Welfare, Teerthankar Mahaveer University Moradabad, Uttar Pradesh,
Abstract

Sustainable business strategy increasingly demands the integration of advanced computational tools that can process complex, multi-dimensional data for informed decision-making. This study presents a comprehensive framework that integrates Artificial Intelligence (AI), Data Analytics, and Decision Modelling through a Multi-Criteria Engineering Approach to enhance sustainability-oriented corporate planning. The framework leverages machine learning algorithms to predict business performance indicators, applies data analytics for pattern discovery, and utilizes Multi-Criteria Decision-Making (MCDM) models such as Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for strategic optimization. Quantitative data from energy-intensive industries were analyzed using AI-driven predictive models to evaluate key sustainability dimensions economic efficiency, social responsibility, and environmental impact. The integrated model provided a systematic ranking of alternative strategies, balancing profitability with environmental compliance and stakeholder value. Findings demonstrate that combining AI and decision modelling enhances strategic agility, reduces uncertainty, and supports transparent sustainability decisions. The proposed framework establishes a scalable blueprint for corporate managers and policymakers to align business growth with sustainable development objectives using data-driven engineering intelligence.

Keywords
Recommended Articles
Original Article
Career Optimism through Career Adaptability and Psychological Capital
...
Original Article
Scholarship On Biomedical and Health Informatics Education
Original Article
Behavioral Finance Insights Shaping Risk Perception and Investment Decisions in Volatile Financial Markets
...
Original Article
Imitation And Simulation: Poetry And the Virtual Worlds of Ai and Social Media
Loading Image...
Volume 2, Issue:6
Citations
280 Views
152 Downloads
Share this article
© Copyright Advances in Consumer Research