

Supply Chain Optimization and Resilience in Global Logistics: A Case Study of DHL

Vageswary Balasuperaniam^{1*}, Tan Seng Teck¹, Lim Swee Geok¹, Chee How Liau², Pradeep Sonar³

¹INTI International University, Nilai, Seremban, Malaysia

²Lecturer in Marketing, Danford Higher Education, Melbourne, Australia

³Professor (Management), Head - International Program Office, Nodal Officer-NEP 2020, HOD - School of Management, D Y Patil University, Pune, Ambi

*Corresponding Author

Email ID : i25033338@student.newinti.edu.my

ABSTRACT

The global supply chains have developed in the face of strong disruptions in the past couple of years, due to pandemics, war-related global disruptions, industrial growth, climactic global shocks, and rapid technological shifts. Organizations have to optimize cost efficiency with other often competing priorities of flexibility, resilience, and sustainability. This paper focuses on how DHL achieves this in the global supply chain and what measures it takes to enhance resilience through digital transformation, strategic supplier diversification, integrated multimodal logistics, and sophisticated/geo-graphical performance management systems. The research, based on qualitative methodology of corporate disclosures and peer-reviewed academic literature, aims to focus on what key area/stratagem of optimizations and/or resilience drives operational continuity and/or competitive advantage in the long term. The research operationalizes the concepts of resilience and drives of operational optimization/efficiency, and proposes testable hypotheses for future empirical research. It is shown, on the case of DHL, that the integrated use of AI, predictive analytics, diversified transport networks, and to an extent sustainability efforts, strives to enhance efficiency and preparedness for disruptions. The case also aims to add to the global logistics firm's literature on supply chain resilience by providing an integrated, holistic, case-based approach..

Keywords: Supply Chain Optimization, Supply Chain Resilience, DHL, Digital Transformation, Global Logistics, Risk Management.

1. INTRODUCTION:

The global supply chain system is constantly improving. It can be impacted in an inter-regional manner. As seen during the initial stages of the COVID-19 pandemic, when chains can be disrupted globally, it is critical that an organization is able to respond effectively by maintaining their supply chain. As production focuses on lower cost areas and is globalized, production ceases in many of the local areas. It adds a great deal of risk to the system by concentrating supply chain activities in one area. Achilleus. They supply chain activities in one area. Achilleus supply chain activity is one area. They may be able to shift quickly to accommodate the changes, or they may have multiple supply chains, or they may have multiple supply chains. The supply chain must be able to quickly provide the changes. The openness of the system may be more impacted by the lower production costs. The system must be able to quickly provide the changes. The focus must be on the productivity cost. The greater the number of activities, the greater the risk to the system. To survive innovation, production, and effectiveness must be the focus. The number of activities must be focused on effectiveness. Pressure must be applied from all sides to achieve the desired effectiveness. Scrum. The more the system is towards the most improvement. As during the initial stages. The further the initial stage, the greater the

number of activities. Adjusting the focus of impact is a predominant example. The amount of impact needs to develop the system. Because the logistics service providers are responsible for transportation, warehousing, inventory control, and last-mile delivery, they are critical in positioning supply chain resilience. Expanding global logistics networks requires firms to incorporate state-of-the-art technologies like artificial intelligence (AI), the Internet of Things (IoT), predictive analytics, automation, and digital twins for improvement of visibility, predictive accuracy, and real-time decision-making (Richey et al., 2021; Dubey et al., 2021). Therefore, the digital transformation of firms became essential for supply chain optimization. It allows firms to enhance route planning, reduce operational costs, increase the reliability of service, and improve predictive monitoring to reduce risk exposure. DHL is the best example of a global logistics company that has used digital design innovation, proactive supplier management, multimodal logistics differentiation, and purpose-driven sustainability to make its operations more efficient and resilient. DHL has a very complicated and varied logistics ecosystem that includes express delivery, freight forwarding, contract logistics, and e-commerce. The company operates in more than 220 countries and territories (DHL Group, 2023). The company has spent a lot of money on AI-driven forecasting, IoT tracking, robotics, warehousing

automation, and supply chain visibility to make global operations more efficient and better able to respond to market changes (Sokhetska et al., 2024; Gazi et.al, 2025).

DHL doesn't just use new technology; how they run and organise their supply chain is just as important. An example of this can be multi-sourcing, route redundancy, and disaster preparedness. Such alternatives help them keep, as of now, unscathed routes, operational. These also help them maintain their service in bad times, and secure their customers' trust (Ivanov, 2021; Wieland & Durach, 2021). DHL also uses Environmental, Social, and Governance (ESG) strategies in their logistics to make their supply chain operations more sustainable (Seuring & Müller, 2008; Zaid et al., 2025). The expanding study of supply chain networks, tend to overly differentiate, focusing more on one area of study than the others. Empirical studies examining global logistics firms on the integration of the four areas of optimization, resilience, supplier integration, and sustainability, is quite lacking (Dubey et al., 2021; Wieland & Durach, 2021). Research on the relationships among various elements facilitating the performance of supply chains, particularly during turbulent times, remains insufficient. This study is analysing DHL's global supply chain to comprehend the interplay of resilience and optimisation strategies in extensive logistics operations. This study examines the diverse elements of DHL's supply chain, encompassing its structure, digital optimisation initiatives, supplier collaboration, risk mitigation strategies, and performance evaluation systems. The study seeks to develop a conceptual framework that links the factors influencing supply chain optimisation to the results of resilience and enduring competitive advantage. The outcome of this study offers both a theoretical and practical contribution by demonstrating to logistics companies the integrated supply chain frameworks they can build to enhance efficiency and improve disruption preparedness. The study also makes practical recommendations to supply chain practitioners on how to develop adaptive, digitally enabled, and resilient logistics frameworks in a volatile global environment.

2. LITERATURE REVIEW

2.1 Supply Chain Optimization in Global Logistics

There are several methods used by supply chains optimizations. Enhancing supply chain efficiencies in logistics and distribution networks entails several activities, including responsiveness, and integrating processes through streamlined planning and technology. Integration and process improvements can lead to increased efficiencies, cost reductions, and develop a more responsive and reliable supply chain. more responsive supply chain. Improvements in supply chain efficiency, responsiveness, and cost reductions can also be achieved through process integration and technological improvements. Initial improvements to supply chains focused on streamlining transportation, lowering costs, and improving overall warehouse operational efficiency. Improvements in supply chains focused on streamlining transportation, improving overall operational cost efficiencies, and lowering warehouse inventories. However, globalization, demand uncertainty, and

operational disruption have limited these objectives (Pettit, Croxton, and Fiksel, 2019). It's also imperative to recognize the importance of ensuring the continuous and robust performance of the supply chain. Modern disruption scenarios and dynamic, responsive decision-making must be incorporated into the cost minimization (static) framework. Wieland and Durach (2021) State that companies achieving a cost-effective adaptive business model are able to perform at optimum levels during times of volatility. Furthermore, the integration of multimodal transportation, dynamic routing, and real time inventory systems have also provided efficiencies in the logistics network. These developments have also provided the ability for firms to enhance service reliability, reduce lead times, and improve the allocation of supply network resources.

2.2 Supply Chain Resilience: Key Concepts and Capabilities

Maintaining service levels while absorbing and adapting to disruptions is what defines supply chain resilience. To gravitate towards service levels while disruptions occur, supply chain disruptions must be managed using an adaptable approach, using a combination of flexible, redundant, and collaborative streams, with an emphasis on rapid recovery. (Ponomarov & Holcomb, 2009) Visibility, flexibility, velocity, and collaboration are key attributes to resilience, with the addition of redundancy, to expand operational streams while reducing the impact of disruptions (Pettit et al., 2019). From a lean to a diversified supply chain, the systemic integration of a risk-aware design approach within the interconnected networks of supply chain streams demonstrates a pivot towards operational resilience (Ivanov, 2021). Diverse suppliers, decentralized distribution networks, and robust integration are resilient attributes within intersecting streams of supply chain networks (Wieland & Durach, 2021). Resilience has evolved towards not being a peripheral operational focus, but priority strategic focus.

2.3 Digital Transformation as an Optimisation and Resilience Enabler

Digital transformation is one of the key factors that drives both supply chain optimisation and resilience. Artificial Intelligence (AI), Internet of Things (IoT), predictive analytics, automation, and digital twins improve the extent of real-time visibility, forecasting, and decision making (Richey et al., 2021; Sokhetska et al., 2024). AI demand forecasting is more efficient at planning and reducing inventory uncertainty, while IoT tracking is more efficient at monitoring shipments as well as controlling the tracking of environmental parameters. Logistics digital twins enable firms to replicate logistical experiences and test scenarios. They reinforce firms' abilities to prepare for and strengthen responses to disruptions (Ivanov, 2021). Postulation of the relationship of digitalisation and supply chain agility by Dubey et al. (2021) is valid because digitalisation lowers the impediment to supply chain agility through enabling anticipatory detection of risks and adaptive responses. Despite the multitude of truths of the above statements, the majority of scholars are of the assumption that there is no single factor that technology and only technology, can

improve performance. The literature suggests that there are various intangible factors, such as an alignment of the organisation, the structure of governance, the capabilities and supplied intermixed the workforces, and the tolerance of technological investments toward operational and functional benefits of the provided willingly/ unwilling by the workforces (Wieland & Durach, 2021). \n\n

2.4 Supplier Collaboration, Diversification, and Risk Management

The relationship with the supplier is important for the supply chain's performance and its ability to adapt to changes in the business world. If you only use low-cost procurement strategies, you become dependent on your suppliers, which makes you more vulnerable. Supplier partnerships, on the other hand, can make both stability and innovation better by working together for a long time, planning together, and coming up with ways to share risk (Liu, Huang, & Zhang, 2020). Vendor-Managed Inventory (VMI) is a popular collaborative strategy because it reduces stock variability and improves service (Liu et al., 2020). In VMI, suppliers control stock replenishment based on changing demand. Supplier diversification is also becoming more popular as a way to make supply chains more resilient, since it lowers the risks of having only one supplier and the problems that come from having a broken global supply chain (Ivanov, 2021). To avoid supply disruptions, Hallikas et al. (2005) outline a supplier risk classification system that includes performance monitoring and early warning systems. By integrating supplier risk analytics with performance dashboards, companies position themselves to manage key operational and financial risks.

2.5 Performance Evaluation and Sustainability Integrations within Supply Chains

Performance Evaluation Systems are very important in evaluating how effective a supply chain is at achieving its efficiency, cost, service quality, and risk metrics. The most common Key Performance Indicators (KPIs) are On-Time-In-Full (OTIF) service, order cycle times, cost per shipment transported, and reliability of supplier deliveries (Chopra & Meindl, 2022). Continuous Improvement methods like Lean and Six Sigma can make performance more efficient by cutting down on waste and variability (Pettit et al., 2019). A critical dimension of supply chain strategy that has recently gained prominence is its Sustainability. Sustainable Supply Chains are those that facilitate the integration of Logistics with Environmental, Social, and Governance (ESG) factors by fostering Green Logistics, the reduction of emissions, and circular economy practices (Seuring & Müller, 2008). Sustainability-oriented firms have been shown to experience improvements in brand reputation, adherence to regulations, and the establishment of more sustainable operations over time (Zaid et al., 2025). Additionally, Sustainability enhances Resilience by decreasing potential adverse effects of the environment, increasing trust and confidence of key stakeholders, and improving the long-term viability of a supply chain, overall (Wieland & Durach, 2021).

2.6 Research Gap

The current literature offers significant insights into supply chain optimisation, resilience, digital transformations, supplier collaboration, and sustainability. But these areas are often looked at on their own. There is little empirical evidence that connects optimization, resilience, supplier management, sustainability, and performance along a single global logistics case study. Moreover, the majority of resilience literature has been either theoretical or based on extensive survey instruments, with a scarcity of empirical case studies examining multinational logistics companies and their integration of resilience and optimisation. This has led to a lack of understanding of how global logistics use digital advances, supplier strategies, diversification, and performance management. This study addresses this deficiency by employing a case study methodology focused on DHL, examining the attainment of supply chain optimisation and resilience within a vast global logistics framework. The study seeks to develop a cohesive conceptual framework that links optimisation to resilience, thereby providing both theoretical and practical insights for the management of supply chains to achieve efficiency and resilience.

3. METHODOLOGY

3.1 Research Design

The supply chain optimization and resilience strategies within global logistics at DHL will be examined using a qualitative and conceptual case study approach. The research will be of a conceptual nature and will not use primary empirical research. Rather, it will integrate corporate case study evidence with academic theory and building an integrated analytical framework. A case study approach works well with complex organizational problems within real-world circumstances, especially when the problem and the environment do not have clear boundaries (Yin, 2018). The case study method will provide insight into how automation and resilience strategies are structured and implemented within global logistics, given the fact that DHL is a multinational logistics provider.

3.2 Case Selection

The global operational scale, supply chain complexity, technological leadership, and strategic focus on digital transformation, resilience, and sustainability placed DHL as the single case for this study. DHL is the world's leading logistics company with operations in more than 220 countries. DHL is now an established logistics company and here for examining integrated supply chain optimization and resilience strategies. The global logistics research case is influenced by DHL's extensive technology adoption, supply chain collaboration, and risk management.

3.3 Data Collection

The research relies on secondary data from key corporate and academic sources. These are DHL corporate annual reports and other corporate communications, sustainability reports, and other reports on resilience in global supply chains. These documents describe in detail various aspects of global operations, digitalization,

supplier management, and risk management at DHL (DHL Group, 2023; DHL Group, 2024). The author also used industry reports, documents, and trend analyses in logistics to describe the practice and global logistics context of the analyzed strategies. The author used peer-reviewed academic research and mainstream literature in supply chain management to enhance the theoretical aspects of the research. The breadth of data sources used for the research enables the author to refine the findings and provide a diverse and valid analysis from various perspectives (Eisenhardt, 1989).

3.4 Data Analysis

The writer used thematic analysis on the data they collected. The study's data was coded and analysed according to the main themes: ways to improve the supply chain, ways to be resilient, digital transformation, working with suppliers, managing performance, and environmentally friendly practices. The author examined the interconnections and trends among these themes to formulate a comprehensive perspective on how DHL reconciles optimisation with resilience. This also helped the author come up with a conceptual framework that linked the parts of optimisation to the results of resilience.

3.5 Research Validity and Reliability

The author implemented a number of strategies to enforce rigor in the methodology of the study. The author utilized data triangulation to cross-validate the findings from the corporate reports, the academic literature, and the industry literature. The author used multiple theories to analyze the findings to ensure Theoretical triangulation. These theories include the supply chain optimization theory, the resilience capability theory, and the digital transformation theory. The qualitative case study design, per Sherwood et al. (2020), does not allow for statistical generalizability. However, it does allow for strong analytical generalization and enables the findings to contribute to theory and understanding of practice.

3.6 Ethical Considerations

In the course of this research, all utilized data were acquired from publicly disclosed, ethically sourced data, including scholarly articles and company registrations. The research complied with the standards of ethics, and the data were properly cited throughout the research for integrity and transparency purposes.

4. CONCEPTUAL FRAMEWORK: LINKING SUPPLY CHAIN OPTIMIZATION TO RESILIENCE

4.1 Theoretical Foundation

The proposed conceptual framework integrates supply chain optimization theory, resilience capability theory, and digital supply chain transformation literature. Regarding supply chain optimization theory, for the theory to be justified, there has to be an explanation for the improvement in cost efficiency, service performance, responsiveness, and resource utilization through the designing of processes, with the integration of appropriate technology, and the use of coordination frameworks (Chopra & Meindl, 2022). On the other hand, in the scope

of resilience theory, which deals with the concept of the systems, there, the relevant system has to, at a minimum, contain the system's ability to forecast disruptions, absorb shocks, and, through a process of transforming the system's structure, ultimately accommodate itself to different systems of an environment, (Ponomarov & Holcomb, 2009). The most recent literature suggests that there is no need to consider optimization and resilience to be at odds, when there are digital capabilities, collaboration with and diversification of suppliers, and sustainable practices (Wieland & Durach, 2021; Ivanov, 2021). Optimization and resilience can be seen as outcomes that are strategically at odds with each other. Visibility, prescriptive decision-making, and agility in operations can all be attributed to digital transformation. In addition, the diversification of suppliers and multimodal logistical systems reduces dependency and enhances the agility of supply chains in a flexible manner (Dubey et al., 2021). ESG-integrated systems, as opposed to non-sustainable systems prone to deterioration in the environment and to the systems of social control, decrease the risks associated with the environment and with social control – the most critical elements of sustaining a supply chain over the long-term (Seuring & Müller, 2008).

Informed by the perspectives described above, this study intends to construct a framework where supply chain optimiza

4.2 Key Constructs in the Framework

The framework created for this research is based on three related categories of constructs: independent variables (which are termed as optimization drivers), mediating capabilities, and dependent variables (which are termed as performance outcomes). These constructs describe the relationship between specific strategic supply chain activities and the resultant improvements in supply chain resilience and performance over time for the organization. Designed as optimization drivers, the independent variables for this framework are the strategic pathways through which organizations achieve greater levels of efficiency, responsiveness, and operational effectiveness. One of the primary variables is digital transformation, which includes artificial intelligence, Internet of Things (IoT), predictive analytics, and automation, as well as other data-processing technologies, which collectively improve forecasting, real-time visibility, and decision-making. Collaboration and diversification with suppliers represent another key variable, where practices such as Vendor-Managed Inventory (VMI), multi-sourcing, and risk-sharing partnerships where single suppliers are eliminated, improve supply continuity and collaboration. Operational flexibility is further enhanced by the integration of multiple transport modes and route redundancy, thus lessening the supply chain's vulnerability to logistical disruptions. In the optimization context, performance measurement systems are critical by incorporating Key Performance Indicators (KPIs), digital control towers, Lean management, and practices of continuous improvement, to reinforce operational efficiency.

To further elaborate, sustainability and the integration of ESG (Environmental, Social, and Governance) factors as

the refinement control of ESG sustainability as a business value driver of green go logistics, value business sustainability and compliance as environmentally responsible, sustainable, and ethics positive transportation, value sustainable and compliance environmentally responsible business green sourcing, and sustainability value positive environmentally responsible business ethics green sourcing transportation; within the sustainable business practices, of green go logistics, of value sustainability compliance, and within the environment responsible, sustainable, and ethics positive transportation sustainable practice, value sustainability compliance environmentally responsible and positive ethics green sourcing. The mediating capabilities, business practices as operational constructs of the refinement control of ESG sustainability as a business value driver of green go logistics, value business sustainability and compliance as environmentally responsible, sustainable, and ethics positive transportation, value sustainability compliance environmentally responsible and positive ethics green sourcing. Supply chain visibility helps businesses be more open and responsive by letting them keep an eye on their inventory, evaluate and keep an eye on the performance of their suppliers, and find and fix problems in real time. To be more responsive and visible, you need to shorten the time it takes to monitor and fix problems, respond to performance, and change the supply. You also need to have a variety of types of stock on hand, as well as flexible and agile buffering structures, and set up active alternate diversion channels for supply, transportation, and stock to deal with a market disruption.

Better delivery performance, shorter lead times, and being more responsive to customer needs all make service more reliable and make customers happier. These things help an organisation stay ahead of the competition in the long run by solidifying its market position, keeping its operations going, and making it more adaptable to changes in the global market.

4.3 Conceptual Framework Model

Figure 1: Conceptual Framework Linking Optimization Drivers to Supply Chain Resilience
(Source: Author)

4.4 Theoretical Propositions

The study puts forward the following propositions based on the framework:

P1: Digital transformation improves supply chain visibility and the ability to make decisions based on predictions.

P2: Working together with suppliers and having a variety of them makes supply chain networks more flexible and redundant.

P3: Systems for measuring performance help with ongoing optimisation and adaptability.

P4: Sustainability efforts help make the supply chain more resilient over time and lower the risk.

P5: Mediating capabilities (like visibility, flexibility, redundancy, and predictive intelligence) make the link between optimisation drivers and resilience outcomes stronger.

4.5 Contribution of the Conceptual Framework

The new framework strengthens a singular Theory Of Supply Chain Management by integrating for the first time the elements of optimisation, resilience, digital transformation, supplier strategy, and sustainability into a model that explains how efficiency and supply chain resilience can be achieved simultaneously. The model identifies the parameters of operational optimisation that lead to adaptive and disruption-free performance. In doing so, it explains the intermediary roles of operational (or resource) visibility, flexibility, and redundancy, and the predictive nature of the decision-making process. The model not only aids in refining a rather simplistic view of supply chain management but also serves practising logists and supply chain managers in the construction of technologically advanced resilient global supply networks. In addition, it opens up avenues to test, refine, and develop empirically based theories in diverse settings and locations.

5. Findings and DHL Case Analysis

The analysis of the DHL case shows that the company has built a global supply chain that is both digitally enabled and highly integrated. This is meant to improve both operational efficiency and resilience. DHL has a multimodal logistics network that includes air, ocean, rail, and road transportation. This network is won through by a digital control tower and platform to be able to see your supply chain in real time (DHL Group, 2023). To help forecast demand more accurately, optimise delivery routes and make shipments more transparent, the company deploys AI, IoT tracking, predictive analytics robotics, as well as warehouse automation (DHL Group 2024). DHL leverages Lean and Six Sigma methodologies, along with standardised Key Performance Indicators (KPIs), such as On-Time-In-Full (OTIF), supplier delivery reliability or logistics cost efficiency to enhance supply chain optimisation. This allows them to, in turn, make decisions based on data and continue to improve their performance. Long-term by strategic partnerships, SLAs, VMI systems and supplier risk monitoring dashboards organise things so suppliers can co-operate better. This increases the accuracy of inventory

and reduces the variability of supply. The case also demonstrates how DHL is proactive in avoiding risk and being resilient. To ensure continuous service during geopolitical disruptions, natural disasters and changes in demand the company applies a multi-sourcing supplier diversification strategy, route back-ups, regional distribution hubs buffer stock and disaster preparedness programs (DHL Group 2023). The incorporation of predictive risk analytics with DHL's Disaster Response Teams helps in obtaining early alerts and facilitating timely crisis responses. DHL's sustainability efforts in regulatory compliance and operational stability are improved with the implementation of electric delivery vehicles, sustainable packaging, green logistics, carbon-reduction programs, and the corporate operational sustainability initiatives (DHL Group, 2024). Overall, the evidence shows that DHL has integrated digital transformation, resilience planning, collaboration with suppliers, performance management, and ESG initiatives seamlessly within a single global supply chain framework.

6. Discussion and Theoretical Contributions

The results of the DHL case study support the idea that making the supply chain more efficient and more resilient are two goals that work well together. DHL's use of digital technologies, working with suppliers, diversifying its multimodal network, measuring performance, and promoting sustainability all show how companies can improve efficiency while also being better prepared for disruptions. The case substantiates resilience theory by demonstrating that attributes such as visibility, flexibility, redundancy, and predictive decision-making serve as essential mechanisms that convert optimisation strategies into resilient supply chain results. This study enhances supply chain management literature by expanding current resilience frameworks with empirical insights derived from a global logistics context. It emphasises digital transformation not merely as a means to enhance efficiency but also as a facilitator of resilience that fosters transparency, risk anticipation, and adaptive response capability. The findings also add to supplier relationship theory by showing how collaborative sourcing models, Vendor-Managed Inventory, and risk-sharing partnerships can make operations more stable and open up new possibilities for innovation. The study incorporates sustainability into resilience discourse by illustrating that ESG-focused logistics strategies enhance long-term

supply chain viability, regulatory preparedness, and stakeholder confidence. The suggested conceptual framework presents a comprehensive theoretical model that connects optimisation drivers to resilience outcomes, establishing a basis for subsequent empirical validation and strategic decision-making in global supply chain management.

7. Conclusion

This study analysed supply chain optimisation and resilience via a case study of DHL's global logistics operations. The results show that DHL has created a supply chain strategy that effectively combines digital transformation, working with suppliers, using multiple modes of transportation, measuring performance, and sustainability efforts to improve both operational efficiency and resilience. The case shows that cutting-edge technologies like artificial intelligence, the Internet of Things (IoT), predictive analytics, and automation are very important for making things easier to see, making better decisions, and responding to problems more quickly. The study also shows that strategic tools like supplier diversification, route flexibility, buffer inventory, disaster preparedness, and predictive risk management can make resilience even stronger. DHL's alignment of optimisation efforts with environmental, social, and governance (ESG) objectives underscores the increasing significance of sustainable logistics in attaining enduring supply chain stability and competitive advantage. This research enhances supply chain management theory by proposing a conceptual framework that connects optimisation drivers, mediating capabilities, and performance outcomes, illustrating how efficiency-oriented strategies can simultaneously function as facilitators of resilience. From a practical standpoint, the results provide significant insights for logistics and supply chain managers aiming to create adaptive, technology-driven, and disruption-proof supply chain networks. Subsequent research could enhance this study by integrating primary data, performing multi-case comparative analyses, or employing quantitative techniques to evaluate and improve the proposed framework across various industries and geographical settings

REFERENCES

1. Chopra, S., & Meindl, P. (2022). Supply chain management: Strategy, planning, and operation (8th ed.). Pearson Education.
2. Dubey, R., Gunasekaran, A., Bryde, D. J., Dwivedi, Y. K., & Papadopoulos, T. (2021). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organizations. *International Journal of Production Economics*, 233, 107992. <https://doi.org/10.1016/j.ijpe.2020.107992>
3. Eisenhardt, K. M. (1989). Building theories from case study research. *Academy of Management Review*, 14(4), 532–550. <https://doi.org/10.5465/amr.1989.4308385>
4. Gazi, M. A. I., Al Masud, A., Emon, M., Ibrahim, M., & bin S Senathirajah, A. R. (2025). The triadic relationship between green HRM, innovation, and pro-environmental behaviour: a study of their interactions and impacts on employee productivity and organizational sustainability. *Environmental Research Communications*, 7(1), 015016. DOI 10.1088/2515-7620/ada676
5. Hallikas, J., Puimalainen, K., Vesterinen, T., & Virolainen, V. (2005). Risk-based classification of supplier relationships. *Journal of Purchasing and Supply Management*, 11(2–3), 72–82.

<https://doi.org/10.1016/j.pursup.2005.10.005>

6. Ivanov, D. (2021). Supply chain viability and resilience: A state-of-the-art review and future research directions. *Annals of Operations Research*, 319, 1411–1431. <https://doi.org/10.1007/s10479-021-04073-0>

7. Liu, J., Huang, F., & Zhang, C. (2020). Coordination of VMI supply chain with replenishment tactics under risk aversion and sales effort. *4OR: A Quarterly Journal of Operations Research*, 19(2), 389–414. <https://doi.org/10.1007/s10288-020-00450-1>

8. Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The evolution of resilience in supply chain management: A retrospective on ensuring supply chain continuity. *Journal of Business Logistics*, 40(1), 56–65. <https://doi.org/10.1111/jbl.12202>

9. Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. *The International Journal of Logistics Management*, 20(1), 124–143. <https://doi.org/10.1108/09574090910954873>

10. Richey, R. G., Chowdhury, S., Davis-Sramek, B., & Giannakis, M. (2021). Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. *Journal of Business Logistics*, 42(4), 579–607. <https://doi.org/10.1111/jbl.12299>

11. Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. *Journal of Cleaner Production*, 16(15), 1699–1710. <https://doi.org/10.1016/j.jclepro.2008.04.020>

12. Sokhetska, A., Koren, O., Kravchenko, A., Danik, N., & Leonova, S. (2024). The role of the Internet of Things in increasing the efficiency of logistics companies. *Acta Logistica*, 11(2), 103–112. <https://doi.org/10.22306/al.v11i2.508>

13. Wieland, A., & Durach, C. F. (2021). Two perspectives on supply chain resilience. *Journal of Supply Chain Management*, 57(3), 315–322. <https://doi.org/10.1111/jscm.12271>

14. Zaid, M., Jaaron, A. A. M., & Bon, A. T. (2025). Driving sustainable supply chain performance through environmental, social, and governance practices. *Cogent Business & Management*, 12(1), 2443047. <https://doi.org/10.1080/23311975.2024.2443047>

15. Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). Sage Publications.

16. DHL Group. (2023). Supply chain resilience. Deutsche Post DHL Group.

17. <https://www.dhl.com/global-en/home/technology-logistics/supply-chain-resilience.html>

18. DHL Group. (2024). 2024 sustainability report. Deutsche Post DHL Group.

19. <https://reporting-hub.group.dhl.com>

20. DHL Group. (2025). DHL Group business profile. Deutsche Post DHL Group.

21. <https://group.dhl.com>