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 ABSTRACT 

The resurgence of Monkeypox as a worldwide public health problem, for which no treatment is 

available, poses a remarkable diagnostic challenge, especially in mimicking the morphological 

lesions of other infectious skin diseases, such as chickenpox and Measles. Although Polymerase 

Chain Reaction (PCR) is the gold standard for diagnosis due to its high sensitivity, it is not 

widely used in low-resource settings due to cost and infrastructure constraints. To fill this gap, 

in this research, we propose a Deep Learning (DL) model for the multi-class classification of 

skin lesions into four classes: Monkeypox, Chickenpox, Measles, and Normal skin. We curated 

and pre-processed a clinically validated dataset consisting of 2,773 images, which were 

subjected to extensive data augmentation to improve the generalisation capabilities of the model. 

We performed the experiments using transfer learning with three popular CNN models: VGG16, 

ResNet50, and InceptionV3. From comparative experimentation, we identified ResNet50 as the 

best model, outperforming other tested models with an average cross-validation accuracy of 

83.3% and a final test accuracy of 95.2%, having higher precision, recall, and F-1 scores across 

all classes. In order to transfer this experimental research toward clinical application, a web-

based diagnostic tool was developed using the proposed model. This easy-to-use solution 

provides reliable, cost-effective testing on desktop and mobile platforms, and the results are 

promising for the prospects of AI-assisted RPCVs in telemedicine at a community-based 

healthcare screening level 

Keywords: Monkeypox, Deep Learning, Skin Lesion Classification, Multi-Class Classification, 

Transfer Learning, Web-Based Diagnosis. 

 
 

1. INTRODUCTION: 

The re-surfacing of Monkeypox Virus (MpoxV) as a 

global public health threat has sparked strong interest 

from the scientific community, including in the wake of 

recent outbreaks of Mpox in non-endemic territories in 

North America, Europe, and Asia (Sah et al.). Monkeypox 

is a zoonotic infection with the Monkeypox virus 

(MPXV), an Orthopoxvirus that shares symptomatology 

with smallpox (Variola virus) (Bunge et al., 2022). In 

patients, Monkeypox is manifested by fever, 

lymphadenopathy, and pox-like skin eruptions. However, 

they mimic other infectious skin diseases like 

Chickenpox (Varicella-Zoster virus) and Measles 

(Morbillivirus) plethorically and morphologically; 

therefore, it is difficult to differentiate through the naked 

eye (Vaughan et al., 2020). At present, the gold standard 

has become the Polymerase Chain Reaction (PCR) test for 

Monkeypox diagnosis owing to its high sensitivity and 

specificity (Li et al., 2010). Nevertheless, PCR is not 

employed in low-resource settings due to high cost, 

specialized laboratory infrastructure, and lack of skilled 

personnel (Krishna et al., 2024). Therefore, clinicians 

working in underserved areas usually depend on visual 

examination, which leads to misclassification owing to 

the similar clinical presentations of pox-like diseases 

(Chauhan et al., 2023). Misdiagnoses may result in missed 

treatments, case underreporting, and uncontrolled viral 

spread; hence, the pressing need for cost-effective, 

scaleable and dependable diagnostic assays. More 

recently, AI (in particular Deep Learning and 

Convolutional Networks/DL and CNN) has achieved 

dermatologist-level performance in the diagnosis of skin 

diseases like melanoma, along with psoriasis and eczema 

as well (Esteva et al., 2017; Bhardwaj et al., 2023). CNN-

based strategies have been applied to detect Monkeypox; 

however, substantial challenges persist. The majority of 

the AI models depend on binary classification 

(differentiating Monkeypox from normal) and do not 

account for the complex clinical setting where there is a 

need to differentiate Monkeypox from similar case 

scenarios such as Chickenpox and Measles (Setegn & 

Dejene, 2025). Moreover, few studies have succeeded in 

incentivizing a close matching of theoretical models to 

practical systems - in fact, despite reporting high levels of 

experimental precision, there are still relatively very few 

deployed user-accessible diagnostic tools (Goceri, 2021). 

In order to overcome these limitations, we propose a 

strong deep learning architecture for the multi-

classification of skin lesion images, categorised into 

Monkeypox, Chickenpox, Measles, and Normal. 'To 

mitigate the challenges due to limited data, we use transfer 

learning on some of the best-known CNN architectures - 

ResNet50, VGG16, and InceptionV3. Importantly, we go 

beyond experimental validation as we deploy the optimal 

model as a real-time web-based diagnostic tool. This 

Original Researcher Article 

https://acr-journal.com/
https://acr-journal.com/
https://acr-journal.com/
mailto:sabikunnaharswarna11@gmail.com


How to cite : Md Sahiqur Rahman, Shahadat Hossain, Sabikunnahar Swarna, Prosenjit Mojumder , A Deep Learning – Based 

Framework for Multi-Class Classification of Pox Diseases from Skin Lesion Images... Advances in Consumer Research. 2026;3(2): 
265-272 

Advances in Consumer Research 266 

 

 

strategy capitalizes on widespread mobile network access 

to aid in tele-dermatology and triage within low-resource 

settings (Badidi, 2023). 

 

Figure 1: Real-Time Pox Classification 

 

The proposed framework, as shown in Figure 1, takes skin 

lesion images (Monkeypox, Chickenpox, Measles, and 

Normal) and applies a ResNet50 deep learning model with 

a cloud-based web interface to provide real-time 

diagnostic probabilities to mobile handsets. 

2. LITERATURE REVIEW 

The recent resurgence of Monkeypox (Mpox) in endemic 

and nonendemic areas demands more robust surveillance 

and diagnostic facilities (Sah et al., 2022). Earlier 

epidemiological studies highlighted the zoonotic potential 

of the virus and its ability to sustain human-to-human 

transmission, given that it has been directly transmitted 

horizontally between humans during the 2017–2018 

outbreak in Nigeria (Yinka-Ogunleye et al., 2019). 

Primary issues related to the management of these 

outbreaks include the striking clinical resemblance 

between Monkeypox and several other vesiculobullous-

forming diseases, such as Chickenpox and Measles, that 

are difficult to differentiate (Vaughan et al., 2020). 

Despite being the gold standard for diagnosis, Polymerase 

Chain Reaction (PCR) has multiple consensus false 

positive and false negative tests since it needs expensive 

laboratory facilities and skilled manpower (Krishna et al., 

2024). In resource-constrained environments, this 

dependence on laboratory procedures has led to 

significant bottlenecks such that visual observation still 

prevails as the principal mode of diagnosis, even though 

it is prone to misclassification owing to overlapping 

morphological patterns of pox-related skin lesions (Brown 

& Leggat, 2016). In order to solve the problem of the 

above diagnostic barrier, Artificial Intelligence (AI) and 

Machine Learning (ML) methods are widely used in 

medical image analysis. Seminal work by Esteva et al. 

(2017) has shown that Convolution Neural Networks 

(CNNs) can perform at the level of dermatologists with 

respect to the classification of skin cancer. This has also 

been successful for other skin diseases such as psoriasis 

and eczema, where deep learning-based models have 

performed strongly in the feature extraction task 

(Bhardwaj et al.2023; Goceri 2021). In the realm of 

Monkeypox, Transfer Learning has been recently 

investigated to personalize a pre-trained CNN for lesion 

classification. Jaradat et al. (2023) verified that CNN 

procedures are robust classifiers of this complex domain, 

while Ahmed et al. (2024) benchmarked various 

architectures (ResNet50, VGG16, GoogLeNet), and 

demonstrated that, after fine-tuning, deep learning 

models could achieve high validation accuracy. In 

addition, efforts in mobile and edge AI are promising and 

can open up possibilities for scalable, affordable 

diagnoses to be used in rural or underserved communities 

(Sorayaie Azar et al., 2023). Nevertheless, the literature 

has some important drawbacks at the present time. The 

existing AI systems for Monkeypox are binary classifiers, 

it either recognizes the Monkeypox or healthy skin and do 

not reflect common clinical situations where doctors 

should tell whether a patient is infected by Monkeypox 

(Setegn & Dejene, 2025). The second, persisting 

bottleneck is the lack of large, balanced, and clinically 

validated datasets; many studies still use small datasets 

with class imbalance or overweighting of specific skin 

tones that may impede generalizability (Tschandl et al., 

2020). Furthermore, similar visual features make 

differential diagnosis of Monkeypox and Chickenpox or 

Measles difficult (Tan et al., 2025). Lastly, although a few 

investigations suggest that diagnostic algorithms could be 

incorporated into telehealth platforms (Shateri et al., 

2025), wide adoption is restricted by the privacy of users 

and the security of data, as well as regulatory conformity. 

This paper tends to fill in the gap by a strong approach for 

multi-class classification that can discriminate skin of 

Monkeypox, Chickenpox, Measles, and Normal. Unlike 

previous works that work on small binary datasets, we 

adopt well-controlled data augmentation to handle class 

imbalance and put the best-performing ResNet50 model 

into a publicly available real-time web diagnostic tool. 

This strategy effectively responds to the need for low-cost 

and scalable health technologies in resource-limited 

settings. 

3. METHODOLOGY 

Experimental Design 

The present research is founded on a quantitative 

experimental illustration in order to derive a monitored 

deep learning framework for multi-classification of pox-

related skin lesions. The key objective is to come up with 

a potent diagnostic model applicable in distinguishing 

between Monkey pox, Chickenpox, and Measles, and, 

therefore, Normal (healthy) skin, and, consequently, to 

overcome the diagnostic ambiguity typical of resource-

limited settings. The pipeline used in the experiment is 

organized and consists of data curation, cautious pre-

processing, stochastic pre-processing, Transfer Learning 

based on Convolutional Neural Networks (CNNs), and 

web implementation in real time. 

Data Acquisition and Curation 
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A custom dataset is carefully curated, containing 2,773 

high-resolution clinical images for robust and quality 

ground truth in model training. The pictures were all 

obtained in a systematic way from validated and trusted 

sources: peer-reviewed dermatology case reports, 

recognized academic medical sites, and reputable open-

access online medical libraries. The dataset was 

partitioned into four diagnostically meaningful classes 

(Monkeypox, Chickenpox, Measles, and Normal skin) for 

efficient application of supervised learning. A strict two-

phase validation procedure was applied to validate the 

data as well as its clinical utility. In the first stage, all 

images were screened manually for quality and suitability 

(non-blurred, in focus, and visually clear). In the second 

stage, diagnoses were cross-referenced with respected 

dermatological references to decrease label noise and 

improve the overall validity of the labeled dataset. 

 

Data Processing 

A pre-processing pipeline, which was consistently 

adopted for all raw images (by deep neural network 

training and to reduce computational variability), was 

used to standardize the input data. Images were resized to 

a common resolution for encoders and decoders. 224 * 

224 pixels to conform to the input layer sizes of the 

chosen CNN architectures and expedite batch-level 

processing. Noise reduction methods such as Gaussian 

blurring and denoising filters were then used to remove 

environmental artifacts and irrelevant background 

patterns, while maintaining diagnostically relevant lesion 

texture. We clip pixel intensity values to the intervals 

between [0, 255] to [0,1] by dividing the value of each 

pixel by the maximum intensity value (255). This 

normalization was essential for numerical stability during 

training and led to a faster, stable convergence of the 

model. 

 

Data Augmentation  

A strong data augmentation pipeline was also used in 

order to alleviate the consequences of class imbalance and 

to improve the model's generalisation. Training-time 

augmentation was carried out dynamically with random 

transformations on the input images. These 

transformations involved random rotation in ±20o, 

horizontal and vertical flipping, and zooming to simulate 

the variability of clinical image acquisition angles. 

Photometric changes, such as random variances of light 

intensity, contrast, and color saturation, were also 

imposed to emulate different lighting conditions, 

generally found in everyday clinical environments. In 

addition, noise injection techniques (Gaussian noise and 

salt-and-pepper noise) were employed with 50% 

probability to improve the robustness of the model to 

sensor noise, image corruption, and low-level distortions. 

 

Model Development and Transfer Learning 

Three prevalent CNN architectures, VGG16, ResNet50, 

and InceptionV3, which have been proven effective in 

hierarchical feature extraction in medical image analysis, 

were chosen for developing the model. To overcome the 

scale of the curated clinical dataset, a transfer learning 

approach was used in which all the models were 

initialized using ImageNet pretrained weights. This 

allowed the networks to take advantage of general visual 

features like edges and textures, which helped with 

convergence and performance on the target task. The 

original fully connected classification heads of the pre-

trained networks are ditched and replaced by a designed 

classification wrapper. This module consisted Global 

Average Pooling layer to decrease the spatial dimension, 

followed by fully connected dense layers with rectified 

linear unit (ReLU) activation functions. To encourage 

generalization and to counter overfitting, 

theregularization strategies were implemented: Dropout 

layers with a rate of 0.5 and Batch Normalizationwere 

used for stabilizing the learning process and pushing it to 

its optimal value. The eve end of the network had an 

output layer formed by four neurons with a Softmax 

activation producing a probability normalization over 

four diagnostic classes. 

 

Training and Validation Protocol  

The training and validation were carefully designed to be 

robust, reproducible, and unbiased in performance 

measurement. Stratified random sampling was carried out 

to split the dataset into training (70%), validation (15%), 

and testing data partitions while maintaining similar class 

distributions for all the partitions. Furthermore, a triple 

stratified cross-validation strategy was used to better 

evaluate the model performance and its stability on 

different partitions of data. We trained the model with 

Adam optimizer initialized with a learning rate of 0.0001; 

categorical cross-entropy loss was used to accept a multi-

class classification task of predicting broad radiation 

categories. During the training, a batch size of 32 is used, 

and the network is trained for up to 50 epochs. In order to 

decrease overfitting and reduce the training time, early 

stopping with a maximum of 5 epochs of no improvement 

in validation loss was employed. This methodology 

enabled models to converge efficiently and stop training 

proportionally to the generalization capacity. 

 

Performance Evaluation 

A large range of metrics, such as Accuracy, Precision, 

Recall, F1-Score, and Confusion Matrix analysis, were 

used to measure diagnostic performance. Additionally, to 

assess the discriminative capacity of the model, the ROC-

AUC analysis was employed to compare the performance 

of the model at various decision levels. 

 

Deployment and Ethical Considerations 

In order to close the experimental findings with practical 

clinical findings, the top-performing model (ResNet50) 

was implemented as a real-time web-based application 

through the Streamlit framework. This interface enables 

users to post the image of lesions and get real-time 

probabilistic classifications. The ethical considerations 

were followed strictly in the study; all the data were 
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completely anonymized so that they did not contain 

Personally Identifiable Information (PII), and the system 

is specifically aimed at providing support to clinicians and 

is not meant to substitute professional medical judgment.  

Figure 2: Architecture of the Real-Time Pox Disease 

Screening System shows an end-to-end model of 

automated classification of pox diseases. The system is 

fed with images of lesions on the skin, and it accepts four 

different classes, which are Monkeypox, Chickenpox, 

Measles, and Normal skin. This is fed to a Deep Learning 

Model, namely the ResNet50 architecture, that takes the 

complex features and classifies the disease. The result of 

the deep learning model is then fed to the cloud, where it 

serves as the back-end of a Web-Based Diagnostic Tool. 

This app, which can be accessed through a smartphone 

interface, will give the result (Monkeypox) and a specific 

confidence score, providing a real-time, first-time 

screening option of possible pox infections. 

 

 

Figure 2: Architecture of the Real-Time Pox Disease 

Screening System 

4. RESULTS  

Comparative Model Performance 

In order to identify the best CNN-based architecture for 

automatic skin lesion classification, we carried out a 

thorough comparison between three popular pre-trained 

CNN architectures using the VGG16, InceptionV3, and 

ResNet50. All models were trained and tested with the 

same experimental settings, data preprocessing, data 

augmentation, hyperparameter configurations, training 

schedules, and evaluation protocols. This imposed 

technical solution was necessary to allow for the 

mentioned performance differences to arise solely from 

architectural properties rather possibility of external 

covariants. The head-to-head scores in Table 1 suggest 

that ResNet50 was again the superior model under all 

examination measurements in average performance. In 

particular, the best overall test accuracy of 95.2% was 

achieved by ResNet50, which indicated better 

classification performance. The former, InceptionV3, 

yielded 91.8% test accuracy, and the latter, VGG16, an 

accuracy of 89.4%. The superior performance of 

ResNet50 can be primarily attributed to its deep residual 

learning architecture, where the skip connections help in 

better gradient flow during backpropagation. These 

residual connections are effective in mitigating the 

problem of vanishing gradient and facilitate training a 

deeper network that can obtain more complex and 

discriminative feature representations. Additionally, the 

capability of ResNet50 to extract more advanced 

hierarchical structure features has benefited especially 

during training from a moderately sized medical image 

dataset, and when effective feature reuse and reliable 

optimization are desired. On the other hand, VGG16, 

which has a simple architecture and is a strong baseline 

model, suffered from its shallowness and absence of 

residual connections that might limit its representational 

ability. Even though InceptionV3 is designed to perform 

multi-scale feature extraction with parallel convolutional 

paths, its added complexity in architecture can lead to 

optimization being less efficient under the limited data. 

Taken together, these results highlight the generalizability 

and applicability of ResNet50 for the high-accuracy skin 

lesion classification problem in clinical image analysis. 

 

Model 

Architectur

e 

Accurac

y 

Precisio

n 

Recal

l 

F1-

Scor

e 

VGG16 89.4% 0.88 0.87 0.87 

InceptionV

3 

91.8% 0.91 0.90 0.91 

ResNet50 

(Proposed) 

95.2% 0.95 0.94 0.95 

Table 1: Performance Comparison of CNN 

Architectures  

 

Class-Wise Diagnostic Evaluation 

Furthermore, to evaluate the clinical reliability and 

diagnostic utility of the presented framework, an in-depth 

class-wise performance analysis was performed for the 

best-performing ResNet50 model as presented in Table 2. 

This analysis will also further inform the model's 

interpretability to correctly classify each diagnostic 

category and its potential for clinical screener use in 

reality. Some of the sensitivity values were quite close to 

100% for Monkeypox; this was notable with the ResNet50 

model, which had a recall rate of 96.5%. This increased 

sensitivity is of clinical importance, given the need for 

early and precise diagnosis of Monkeypox to ensure 

immediate isolation of patients in a hospital environment 

and to prevent secondary spread. Moreover, the highest 

precision 98.0% was attained in the Normal skin class, 

demonstrating that the model is most effective in 

predicting non-pathological cases without errors. This 

feature is important in the clinics to avoid further workup 

and patient distress. In general, the class-wise diagnostic 
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findings highlight that the model has a high discriminatory 

performance and may potentially be used as a reliable tool 

for automatic skin disease screening. 

 

Class  Precision Recall 

(Sensitivity) 

F1 – 

Score 

Monkeypox 0.94 0.96 0.95 

Chickenpox 0.92 0.91 0.91 

Measles 0.95 0.93 0.94 

Normal 0.98 0.99 0.98 

 Table 2: Class – Wise Performance Metrics ( ResNet50) 

Confusion Matrix Analysis 

The confusion matrix analysis was performed to explore 

in detail the prediction outcomes and class-specific 

misclassification patterns, as represented in Figure 3. The 

results show that most of the misclassification was from 

Monkeypox and Chickenpox. In particular, about 3.5% 

of Chickenpox cases were predicted incorrectly as 

Monkeypox. Factors influencing this misdiagnosis may 

be the striking morphological similarity of both 

conditions, particularly in their vesicular and pustular 

phases, where visual features of lesion shape, size, and 

distribution can frequently be shared. Very similar 

appearances, as in this case, represent a well-recognised 

diagnostic pitfall even to those who are practicing 

clinicians. In contrast, the model had good discrimination 

between Measles and pox diseases -Measles cases were 

classified correctly in 93% of cases. It was assumed that 

this improved sensitivity might be attributed to the nature 

of dermatological presentation in Measles, compared to 

Monkeypox and Chickenpox, where the latter two viruses 

present with raised vesicular or pustular rashes. Taken 

together, confusion matrix analysis offers valuable 

information about the model’s diagnostic performance, 

being supportive of the ability to make visual distinctions 

and identify visually dissimilar disease presentations for 

HCE. 

 

Figure 3: Normalized Confusion Matrix of ResNet50 on 

Test Data  

 

Training Dynamics and Stability 

 

 

Figure 4: Performance Evaluation of a ResNet50 – Based 

Model for Image Classification  

 

An examination of the training dynamics and convergence 

performance for the ResNet50 model was conducted by 

using the training and validation curves shown in Figure 

4. The curves also show stable and smooth convergence 

during the training, which means that optimization is 

highly effective and the learning process contributes to 

stability. Analysis of the loss portrays a well-behaved and 

monotonically decreasing training curve per epoch, 

converging to a stable minimum around epoch 35. No 

further significant performance improvement was 

obtained beyond this point, which suggested that the 

network already learned the important feature 

representations without a risk of over-optimization. In 

addition, overfitting analysis showed that there was not 

much of a spread between training and validation 

accuracy; it has been stable below 2% in the whole 

learning process. This near parallelISM between the two 

curves indicates a good generalization. The observed 

training stability could be explained by the joint effect of 

applied augmentation techniques (i.e., rotation, zooming 

, and noise injection) and various regularization 

techniques (e.g., Dropout, Batch Normalization). 

Together, these techniques were able to control model 

complexity, minimize variance, and avoid overfitting, to 

guarantee its robustness and generalization on new data. 

 

Real – Time Web Deployment Metrics  

The practicality test of this web-based diagnostic 

framework was carried out on a real time bases to 

investigate its practical applicability in clinical and remote 

screening situations. All the inference experiments were 

performed on a prevalent cloud server (CPU-only mode), 

simulating real-time execution in low-resource setups 

with no or limited access to dedicated GPU hardware. 

Around 1.2 seconds per image for the processing of 

models without hardware acceleration was delivered on 

average by the system used in this experiment. Average 

image upload latency was also tested with 4G network 

connections, which resulted in a value under 0.5 seconds. 
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These low end-to-end response times demonstrate that 

the application is responsive and is suitable for near real-

time diagnostic assistance. Taken together, these 

deployment parameters highlight the potential for 

OnIsland as a real-time triage and preliminary screening 

tool in remote or low-resource settings where rapid 

decision-making and minimum infrastructure are 

important. 

 

Figure 5: Real – Time Deployment Metrics CPU 

Inference Time and 4G Upload Latency  

5. DISCUSSION   

Interpretation of Diagnostic Performance 

In this study, we aimed to devise a multi-class deep 

learning model for distinguishing Monkeypox from its 

morphologically similar pathologies in low-resource 

settings. We report that our ResNet50 model outperforms 

others significantly with the highest classification 

accuracy (95.2%), better than VGG16 (89.4%) and 

InceptionV3 (91.8%). This performance gain is due to the 

residual learning style of ResNet, where skip connections 

can be used to attenuate the fading gradient. This 

structural novelty enabled the model to learn complex 

hierarchical features (e.g., texture of pustules and 

distribution patterns of lesions) successfully while 

keeping its performance from degrading when trained on 

a relatively small dataset, as few as 2773 images. 

Comparison with State-of-the-Art Studies 

In order to verify the effectiveness of our method, we have 

compared our results with the recent standards in the 

literature (Table 3). Although earlier research has proven 

that AI can be used in the detection of pox, the research is 

usually limited in scope or accuracy in multi-class 

detection. 

Binary vs. Multi-Class: Papers, like Ali et al. (2022) and 

Heidari et al. (2023), provided high accuracy (>97%) but 

only concentrated on binary classification (Monkeypox 

vs. Healthy). Although statistically significant, these 

models are not clinically applicable in practice, where 

physicians need to discriminate Monkeypox from visually 

similar diseases such as Chickenpox. Our model fills this 

gap by attaining high accuracy (95.2%) on a more 

challenging four-class task. 

Architecture comparison: In a comparable multi-class 

work, Ahmed et al. (2024) described an approach to reach 

94.0% accuracy with a combination of models. It was 

also more accurate (95.2%) and less computationally 

intensive, as it can be used in a mobile embedded 

scenario, being based on a single architecture ResNet50. 

Conversely, the classification performance in this study 

was similar to or greater than that of Jaradat et al. (2023), 

who achieved 93% with MobileNetV2; our model 

exhibits enhanced sensitivity (Recall: 96.5%) for Active 

Monkeypox cases. 

 

Study Methodol

ogy 

Classe

s 

Accur

acy 

Limitatio

ns 

Ali et 

al. 

(2022) 

VGG19 

(Transfer 

Learning) 

2 

(Binary

) 

97.5% Limited to 

binary 

diagnosis; 

No 

different 

diagnosis  

Jarad

at et 

al. 

(2023) 

MobileNe

tV2 

2 

(Mpox, 

C-Pox, 

Health

y ) 

93.0% Lower 

accuracy; 

missed the 

measles 

class 

Ahme

d et al. 

(2024) 

Ensemble 

CNN 

4 

(Multi-

Class) 

94.0% High 

computati

onal cost 

(Ensembl

e) 

Propo

sed 

Metho

d 

ResNet50 

+ Web 

Applicati

on 

4 

(Includ

ing 

Measle

s) 

95.2% Highest 

multi-

class 

accuracy 

+ Real-

time 

deployme

nt 

 Table 3: Comparison with Existing Studies  

 

Clinical Implications 

The clinical outcome of the model that differentiates 

between Monkeypox and Measles with an accuracy of 

93% is a positive clinical outcome. The most common 

cause of misdiagnosis in the first stage of triage is the 

vesicular stage of the Chickenpox that is visually 

comparable to the pustular stage of Monkeypox. Although 

in our Confusion Matrix, an overlap occurred (3.5% of 

cases of Chickenpox resulted in false positives of 

Monkeypox), the system could distinguish between the 

flat maculopapular rash of Measles (and raised lesions of 

pox viruses). This implies that the ResNet50 model has 

the capability of recognizing separate morphological 
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biomarkers, which are required to be employed to screen 

cases appropriately, which can relieve strain on PCR 

testing labs. 

Feasibility for Low-Resource Deployment  

One of the most important contributions of this work is 

the possibility to fill the gap between theory and practice. 

Highly accurate AI models are usually computationally 

expensive and need the use of a GPU infrastructure that 

may not be available in remote health centers. Through 

pipeline optimization, we were able to obtain an average 

of 1.2 seconds per image processing time on a typical 

cloud platform based on a regular CPU. This, combined 

with a low upload latency (Less than half a second on 4G), 

proves that the system can be used effectively as a tele-

dermatology screening tool in endemic areas that have 

little laboratory infrastructure. 

6. LIMITATIONS AND FUTURE DIRECTIONS 

Despite these positive results, there are flaws. First of all, 

the dataset size ( N=2,773 ) is clinically valid, yet on the 

other hand, it is quite small as compared to general vision 

datasets, which can limit the generalizability of the results 

in rare subtypes of skin. Second, we were not very strict 

on the choice of varying skin colors, but a special 

algorithmic bias audit is needed to ensure similar 

performance in all the Fitzpatrick skin types. Further 

studies suggest using the model with TensorFlow Lite 

(TFLite) to ensure that inferences can be completed both 

offline and on-device, to ensure that the model is made 

available in regions with inconsistent internet access. 

7. CONCLUSION  

The current study addresses the significance of the public 

health challenge for the identification of Monkeypox in 

low-resource settings where its clinical uniformity with 

other viral exanthems often confuses. In creating a strong, 

deep learning architecture, we attempted to fill the void 

between AI-based theoretical models and clinical 

applications. Our proposed ResNet50 architecture, which 

was trained using a curated multi-class dataset with 2,773 

images, worked better to differentiate Monkeypox, 

Chickenpox, and Measles as compared to Normal skin. 

We validate through experiments that ResNet50 is the best 

suited for this task, obtaining a classification accuracy of 

95.2%, which outperforms VGG16 and InceptionV3 

significantly. Importantly, the model had a high 

sensitivity (96.5%) for Monkeypox cases; it could 

distinguish Monkeypox from similar conditions such as 

Chickenpox and Measles, which was one of the biggest 

drawbacks evident in previous binary classification 

studies. Moreover, the successful deployment of this real-

time application—providing diagnostic probabilities in 

under 1.2 s on commodity hardware—illustrates its 

potential as a large-scale tele-dermatology tool for remote 

triage. In summary, by providing a streamlined, affordable 

yet sensitive diagnostic solution such as this one, 

healthcare providers can detect and contain Monkeypox at 

its earliest stages. The future scope of the work would be 

to increase the data size with rare skin subtypes and 

optimize the system for mobile offline deployment for 

wide accessibility in areas where internet penetration is 

very low.
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