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ABSTRACT

The resurgence of Monkeypox as a worldwide public health problem, for which no treatment is
available, poses a remarkable diagnostic challenge, especially in mimicking the morphological
lesions of other infectious skin diseases, such as chickenpox and Measles. Although Polymerase
Chain Reaction (PCR) is the gold standard for diagnosis due to its high sensitivity, it is not
widely used in low-resource settings due to cost and infrastructure constraints. To fill this gap,
in this research, we propose a Deep Learning (DL) model for the multi-class classification of
skin lesions into four classes: Monkeypox, Chickenpox, Measles, and Normal skin. We curated
and pre-processed a clinically validated dataset consisting of 2,773 images, which were
subjected to extensive data augmentation to improve the generalisation capabilities of the model.
'We performed the experiments using transfer learning with three popular CNN models: VGG16,
ResNet50, and InceptionV3. From comparative experimentation, we identified ResNet50 as the
best model, outperforming other tested models with an average cross-validation accuracy of
83.3% and a final test accuracy of 95.2%, having higher precision, recall, and F-1 scores across
all classes. In order to transfer this experimental research toward clinical application, a web-
based diagnostic tool was developed using the proposed model. This easy-to-use solution
provides reliable, cost-effective testing on desktop and mobile platforms, and the results are
promising for the prospects of Al-assisted RPCVs in telemedicine at a community-based
healthcare screening level

Keywords: Monkeypox, Deep Learning, Skin Lesion Classification, Multi-Class Classification,

Transfer Learning, Web-Based Diagnosis.

1. INTRODUCTION:

The re-surfacing of Monkeypox Virus (MpoxV) as a
global public health threat has sparked strong interest
from the scientific community, including in the wake of
recent outbreaks of Mpox in non-endemic territories in
North America, Europe, and Asia (Sah et al.). Monkeypox
is a zoonotic infection with the Monkeypox virus
(MPXYV), an Orthopoxvirus that shares symptomatology
with smallpox (Variola virus) (Bunge et al., 2022). In
patients, Monkeypox is manifested by fever,
lymphadenopathy, and pox-like skin eruptions. However,

they mimic other infectious skin diseases like
Chickenpox (Varicella-Zoster virus) and Measles
(Morbillivirus)  plethorically and morphologically;

therefore, it is difficult to differentiate through the naked
eye (Vaughan et al., 2020). At present, the gold standard
has become the Polymerase Chain Reaction (PCR) test for
Monkeypox diagnosis owing to its high sensitivity and
specificity (Li et al., 2010). Nevertheless, PCR is not
employed in low-resource settings due to high cost,
specialized laboratory infrastructure, and lack of skilled
personnel (Krishna et al., 2024). Therefore, clinicians
working in underserved areas usually depend on visual
examination, which leads to misclassification owing to
the similar clinical presentations of pox-like diseases
(Chauhan et al., 2023). Misdiagnoses may result in missed
treatments, case underreporting, and uncontrolled viral
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spread; hence, the pressing need for cost-effective,
scaleable and dependable diagnostic assays. More
recently, Al (in particular Deep Learning and
Convolutional Networks/DL and CNN) has achieved
dermatologist-level performance in the diagnosis of skin
diseases like melanoma, along with psoriasis and eczema
as well (Esteva et al., 2017; Bhardwaj et al., 2023). CNN-
based strategies have been applied to detect Monkeypox;
however, substantial challenges persist. The majority of
the Al models depend on binary classification
(differentiating Monkeypox from normal) and do not
account for the complex clinical setting where there is a
need to differentiate Monkeypox from similar case
scenarios such as Chickenpox and Measles (Setegn &
Dejene, 2025). Moreover, few studies have succeeded in
incentivizing a close matching of theoretical models to
practical systems - in fact, despite reporting high levels of
experimental precision, there are still relatively very few
deployed user-accessible diagnostic tools (Goceri, 2021).
In order to overcome these limitations, we propose a
strong deep learning architecture for the multi-
classification of skin lesion images, categorised into
Monkeypox, Chickenpox, Measles, and Normal. 'To
mitigate the challenges due to limited data, we use transfer
learning on some of the best-known CNN architectures -
ResNet50, VGG16, and InceptionV3. Importantly, we go
beyond experimental validation as we deploy the optimal
model as a real-time web-based diagnostic tool. This
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strategy capitalizes on widespread mobile network access
to aid in tele-dermatology and triage within low-resource
settings (Badidi, 2023).
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Figure 1: Real-Time Pox Classification

The proposed framework, as shown in Figure 1, takes skin
lesion images (Monkeypox, Chickenpox, Measles, and
Normal) and applies a ResNet50 deep learning model with
a cloud-based web interface to provide real-time
diagnostic probabilities to mobile handsets.

2. LITERATURE REVIEW

The recent resurgence of Monkeypox (Mpox) in endemic
and nonendemic areas demands more robust surveillance
and diagnostic facilities (Sah et al., 2022). Earlier
epidemiological studies highlighted the zoonotic potential
of the virus and its ability to sustain human-to-human
transmission, given that it has been directly transmitted
horizontally between humans during the 2017-2018
outbreak in Nigeria (Yinka-Ogunleye et al., 2019).
Primary issues related to the management of these
outbreaks include the striking clinical resemblance
between Monkeypox and several other vesiculobullous-
forming diseases, such as Chickenpox and Measles, that
are difficult to differentiate (Vaughan et al., 2020).
Despite being the gold standard for diagnosis, Polymerase
Chain Reaction (PCR) has multiple consensus false
positive and false negative tests since it needs expensive
laboratory facilities and skilled manpower (Krishna et al.,
2024). In resource-constrained environments, this
dependence on laboratory procedures has led to
significant bottlenecks such that visual observation still
prevails as the principal mode of diagnosis, even though
it is prone to misclassification owing to overlapping
morphological patterns of pox-related skin lesions (Brown
& Leggat, 2016). In order to solve the problem of the
above diagnostic barrier, Artificial Intelligence (AI) and
Machine Learning (ML) methods are widely used in
medical image analysis. Seminal work by Esteva et al.
(2017) has shown that Convolution Neural Networks

(CNNs) can perform at the level of dermatologists with
respect to the classification of skin cancer. This has also
been successful for other skin diseases such as psoriasis
and eczema, where deep learning-based models have
performed strongly in the feature extraction task
(Bhardwaj et al.2023; Goceri 2021). In the realm of
Monkeypox, Transfer Learning has been recently
investigated to personalize a pre-trained CNN for lesion
classification. Jaradat et al. (2023) verified that CNN
procedures are robust classifiers of this complex domain,
while Ahmed et al. (2024) benchmarked various
architectures (ResNet50, VGG16, GoogLeNet), and
demonstrated that, after fine-tuning, deep learning
models could achieve high validation accuracy. In
addition, efforts in mobile and edge Al are promising and
can open up possibilities for scalable, affordable
diagnoses to be used in rural or underserved communities
(Sorayaie Azar et al., 2023). Nevertheless, the literature
has some important drawbacks at the present time. The
existing Al systems for Monkeypox are binary classifiers,
it either recognizes the Monkeypox or healthy skin and do
not reflect common clinical situations where doctors
should tell whether a patient is infected by Monkeypox
(Setegn & Dejene, 2025). The second, persisting
bottleneck is the lack of large, balanced, and clinically
validated datasets; many studies still use small datasets
with class imbalance or overweighting of specific skin
tones that may impede generalizability (Tschandl et al.,
2020). Furthermore, similar visual features make
differential diagnosis of Monkeypox and Chickenpox or
Measles difficult (Tan et al., 2025). Lastly, although a few
investigations suggest that diagnostic algorithms could be
incorporated into telehealth platforms (Shateri et al.,
2025), wide adoption is restricted by the privacy of users
and the security of data, as well as regulatory conformity.
This paper tends to fill in the gap by a strong approach for
multi-class classification that can discriminate skin of
Monkeypox, Chickenpox, Measles, and Normal. Unlike
previous works that work on small binary datasets, we
adopt well-controlled data augmentation to handle class
imbalance and put the best-performing ResNet50 model
into a publicly available real-time web diagnostic tool.
This strategy effectively responds to the need for low-cost
and scalable health technologies in resource-limited
settings.

3. METHODOLOGY
Experimental Design

The present research is founded on a quantitative
experimental illustration in order to derive a monitored
deep learning framework for multi-classification of pox-
related skin lesions. The key objective is to come up with
a potent diagnostic model applicable in distinguishing
between Monkey pox, Chickenpox, and Measles, and,
therefore, Normal (healthy) skin, and, consequently, to
overcome the diagnostic ambiguity typical of resource-
limited settings. The pipeline used in the experiment is
organized and consists of data curation, cautious pre-
processing, stochastic pre-processing, Transfer Learning
based on Convolutional Neural Networks (CNNs), and
web implementation in real time.

Data Acquisition and Curation
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A custom dataset is carefully curated, containing 2,773
high-resolution clinical images for robust and quality
ground truth in model training. The pictures were all
obtained in a systematic way from validated and trusted
sources: peer-reviewed dermatology case reports,
recognized academic medical sites, and reputable open-
access online medical libraries. The dataset was
partitioned into four diagnostically meaningful classes
(Monkeypox, Chickenpox, Measles, and Normal skin) for
efficient application of supervised learning. A strict two-
phase validation procedure was applied to validate the
data as well as its clinical utility. In the first stage, all
images were screened manually for quality and suitability
(non-blurred, in focus, and visually clear). In the second
stage, diagnoses were cross-referenced with respected
dermatological references to decrease label noise and
improve the overall validity of the labeled dataset.

Data Processing

A pre-processing pipeline, which was consistently
adopted for all raw images (by deep neural network
training and to reduce computational variability), was
used to standardize the input data. Images were resized to
a common resolution for encoders and decoders. 224 *
224 pixels to conform to the input layer sizes of the
chosen CNN architectures and expedite batch-level
processing. Noise reduction methods such as Gaussian
blurring and denoising filters were then used to remove
environmental artifacts and irrelevant background
patterns, while maintaining diagnostically relevant lesion
texture. We clip pixel intensity values to the intervals
between [0, 255] to [0,1] by dividing the value of each
pixel by the maximum intensity value (255). This
normalization was essential for numerical stability during
training and led to a faster, stable convergence of the
model.

Data Augmentation

A strong data augmentation pipeline was also used in
order to alleviate the consequences of class imbalance and
to improve the model's generalisation. Training-time
augmentation was carried out dynamically with random
transformations  on  the input  images.  These
transformations involved random rotation in +20°,
horizontal and vertical flipping, and zooming to simulate
the wvariability of clinical image acquisition angles.
Photometric changes, such as random variances of light
intensity, contrast, and color saturation, were also
imposed to emulate different lighting conditions,
generally found in everyday clinical environments. In
addition, noise injection techniques (Gaussian noise and
salt-and-pepper noise) were employed with 50%
probability to improve the robustness of the model to
sensor noise, image corruption, and low-level distortions.

Model Development and Transfer Learning

Three prevalent CNN architectures, VGG16, ResNet50,
and InceptionV3, which have been proven effective in
hierarchical feature extraction in medical image analysis,

were chosen for developing the model. To overcome the
scale of the curated clinical dataset, a transfer learning
approach was used in which all the models were
initialized using ImageNet pretrained weights. This
allowed the networks to take advantage of general visual
features like edges and textures, which helped with
convergence and performance on the target task. The
original fully connected classification heads of the pre-
trained networks are ditched and replaced by a designed
classification wrapper. This module consisted Global
Average Pooling layer to decrease the spatial dimension,
followed by fully connected dense layers with rectified
linear unit (ReLU) activation functions. To encourage
generalization and to counter overfitting,
theregularization strategies were implemented: Dropout
layers with a rate of 0.5 and Batch Normalizationwere
used for stabilizing the learning process and pushing it to
its optimal value. The eve end of the network had an
output layer formed by four neurons with a Softmax
activation producing a probability normalization over
four diagnostic classes.

Training and Validation Protocol

The training and validation were carefully designed to be
robust, reproducible, and unbiased in performance
measurement. Stratified random sampling was carried out
to split the dataset into training (70%), validation (15%),
and testing data partitions while maintaining similar class
distributions for all the partitions. Furthermore, a triple
stratified cross-validation strategy was used to better
evaluate the model performance and its stability on
different partitions of data. We trained the model with
Adam optimizer initialized with a learning rate of 0.0001;
categorical cross-entropy loss was used to accept a multi-
class classification task of predicting broad radiation
categories. During the training, a batch size of 32 is used,
and the network is trained for up to 50 epochs. In order to
decrease overfitting and reduce the training time, early
stopping with a maximum of 5 epochs of no improvement
in validation loss was employed. This methodology
enabled models to converge efficiently and stop training
proportionally to the generalization capacity.

Performance Evaluation

A large range of metrics, such as Accuracy, Precision,
Recall, F1-Score, and Confusion Matrix analysis, were
used to measure diagnostic performance. Additionally, to
assess the discriminative capacity of the model, the ROC-
AUC analysis was employed to compare the performance
of the model at various decision levels.

Deployment and Ethical Considerations

In order to close the experimental findings with practical
clinical findings, the top-performing model (ResNet50)
was implemented as a real-time web-based application
through the Streamlit framework. This interface enables
users to post the image of lesions and get real-time
probabilistic classifications. The ethical considerations
were followed strictly in the study; all the data were
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completely anonymized so that they did not contain
Personally Identifiable Information (PII), and the system
is specifically aimed at providing support to clinicians and
is not meant to substitute professional medical judgment.

Figure 2: Architecture of the Real-Time Pox Disease
Screening System shows an end-to-end model of
automated classification of pox diseases. The system is
fed with images of lesions on the skin, and it accepts four
different classes, which are Monkeypox, Chickenpox,
Measles, and Normal skin. This is fed to a Deep Learning
Model, namely the ResNet50 architecture, that takes the
complex features and classifies the disease. The result of
the deep learning model is then fed to the cloud, where it
serves as the back-end of a Web-Based Diagnostic Tool.
This app, which can be accessed through a smartphone
interface, will give the result (Monkeypox) and a specific
confidence score, providing a real-time, first-time
screening option of possible pox infections.
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Figure 2: Architecture of the Real-Time Pox Disease
Screening System

4. RESULTS
Comparative Model Performance

In order to identify the best CNN-based architecture for
automatic skin lesion classification, we carried out a
thorough comparison between three popular pre-trained
CNN architectures using the VGG16, InceptionV3, and
ResNet50. All models were trained and tested with the
same experimental settings, data preprocessing, data
augmentation, hyperparameter configurations, training
schedules, and evaluation protocols. This imposed
technical solution was necessary to allow for the
mentioned performance differences to arise solely from
architectural properties rather possibility of external
covariants. The head-to-head scores in Table 1 suggest
that ResNet50 was again the superior model under all
examination measurements in average performance. In
particular, the best overall test accuracy of 95.2% was
achieved by ResNet50, which indicated better

classification performance. The former, InceptionV3,
yielded 91.8% test accuracy, and the latter, VGG16, an
accuracy of 89.4%. The superior performance of
ResNet50 can be primarily attributed to its deep residual
learning architecture, where the skip connections help in
better gradient flow during backpropagation. These
residual connections are effective in mitigating the
problem of vanishing gradient and facilitate training a
deeper network that can obtain more complex and
discriminative feature representations. Additionally, the
capability of ResNet50 to extract more advanced
hierarchical structure features has benefited especially
during training from a moderately sized medical image
dataset, and when effective feature reuse and reliable
optimization are desired. On the other hand, VGGI16,
which has a simple architecture and is a strong baseline
model, suffered from its shallowness and absence of
residual connections that might limit its representational
ability. Even though InceptionV3 is designed to perform
multi-scale feature extraction with parallel convolutional
paths, its added complexity in architecture can lead to
optimization being less efficient under the limited data.
Taken together, these results highlight the generalizability
and applicability of ResNet50 for the high-accuracy skin
lesion classification problem in clinical image analysis.

Model Accurac | Precisio | Recal | F1-
Architectur |y n 1 Scor
e e
VGG16 89.4% 0.88 0.87 0.87
InceptionV | 91.8% 0.91 0.90 0.91
3

ResNet50 95.2% 0.95 0.94 0.95
(Proposed)

Table 1: Performance Comparison of CNN
Architectures

Class-Wise Diagnostic Evaluation

Furthermore, to evaluate the clinical reliability and
diagnostic utility of the presented framework, an in-depth
class-wise performance analysis was performed for the
best-performing ResNet50 model as presented in Table 2.
This analysis will also further inform the model's
interpretability to correctly classify each diagnostic
category and its potential for clinical screener use in
reality. Some of the sensitivity values were quite close to
100% for Monkeypox; this was notable with the ResNet50
model, which had a recall rate of 96.5%. This increased
sensitivity is of clinical importance, given the need for
early and precise diagnosis of Monkeypox to ensure
immediate isolation of patients in a hospital environment
and to prevent secondary spread. Moreover, the highest
precision 98.0% was attained in the Normal skin class,
demonstrating that the model is most effective in
predicting non-pathological cases without errors. This
feature is important in the clinics to avoid further workup
and patient distress. In general, the class-wise diagnostic
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findings highlight that the model has a high discriminatory
performance and may potentially be used as a reliable tool
for automatic skin disease screening.

Class Precision | Recall F1 -
(Sensitivity) | Score
Monkeypox | 0.94 0.96 0.95
Chickenpox | 0.92 0.91 0.91
Measles 0.95 0.93 0.94
Normal 0.98 0.99 0.98

Table 2: Class — Wise Performance Metrics ( ResNet50)

Confusion Matrix Analysis

The confusion matrix analysis was performed to explore
in detail the prediction outcomes and class-specific
misclassification patterns, as represented in Figure 3. The
results show that most of the misclassification was from
Monkeypox and Chickenpox. In particular, about 3.5%
of Chickenpox cases were predicted incorrectly as
Monkeypox. Factors influencing this misdiagnosis may
be the striking morphological similarity of both
conditions, particularly in their vesicular and pustular
phases, where visual features of lesion shape, size, and
distribution can frequently be shared. Very similar
appearances, as in this case, represent a well-recognised
diagnostic pitfall even to those who are practicing
clinicians. In contrast, the model had good discrimination
between Measles and pox diseases -Measles cases were
classified correctly in 93% of cases. It was assumed that
this improved sensitivity might be attributed to the nature
of dermatological presentation in Measles, compared to
Monkeypox and Chickenpox, where the latter two viruses
present with raised vesicular or pustular rashes. Taken
together, confusion matrix analysis offers valuable
information about the model’s diagnostic performance,
being supportive of the ability to make visual distinctions
and identify visually dissimilar disease presentations for
HCE.

Confusion Matrix (ResNet50)

Monkeypox

Chickenpox 1

True labels

Measles

Normal

Normal

Monk;eypox Chickénpox Mez;sles
Predicted labels

Figure 3: Normalized Confusion Matrix of ResNet50 on
Test Data
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Figure 4: Performance Evaluation of a ResNet50 — Based
Model for Image Classification

An examination of the training dynamics and convergence
performance for the ResNet50 model was conducted by
using the training and validation curves shown in Figure
4. The curves also show stable and smooth convergence
during the training, which means that optimization is
highly effective and the learning process contributes to
stability. Analysis of the loss portrays a well-behaved and
monotonically decreasing training curve per epoch,
converging to a stable minimum around epoch 35. No

further significant performance improvement was
obtained beyond this point, which suggested that the
network already learned the important feature

representations without a risk of over-optimization. In
addition, overfitting analysis showed that there was not
much of a spread between training and validation
accuracy; it has been stable below 2% in the whole
learning process. This near parallelISM between the two
curves indicates a good generalization. The observed
training stability could be explained by the joint effect of
applied augmentation techniques (i.e., rotation, zooming
, and noise injection) and various regularization
techniques (e.g., Dropout, Batch Normalization).
Together, these techniques were able to control model
complexity, minimize variance, and avoid overfitting, to
guarantee its robustness and generalization on new data.

Real — Time Web Deployment Metrics

The practicality test of this web-based diagnostic
framework was carried out on a real time bases to
investigate its practical applicability in clinical and remote
screening situations. All the inference experiments were
performed on a prevalent cloud server (CPU-only mode),
simulating real-time execution in low-resource setups
with no or limited access to dedicated GPU hardware.
Around 1.2 seconds per image for the processing of
models without hardware acceleration was delivered on
average by the system used in this experiment. Average
image upload latency was also tested with 4G network
connections, which resulted in a value under 0.5 seconds.
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These low end-to-end response times demonstrate that
the application is responsive and is suitable for near real-
time diagnostic assistance. Taken together, these
deployment parameters highlight the potential for
Onlsland as a real-time triage and preliminary screening
tool in remote or low-resource settings where rapid
decision-making and minimum infrastructure are
important.

Average Inference Time Upload Latency (4G Networks)

a )))) (i »))_} a
8

CPU-only Server ~ Image Analysis

Processing on Standard Cloud CPU Data Transfer via Mobile Network

Conclusion: Low Latency confirms Viabilty for
Remote Triage without GPU Infrastructure.

Figure 5: Real — Time Deployment Metrics CPU
Inference Time and 4G Upload Latency

5. DISCUSSION
Interpretation of Diagnostic Performance

In this study, we aimed to devise a multi-class deep
learning model for distinguishing Monkeypox from its
morphologically similar pathologies in low-resource
settings. We report that our ResNet50 model outperforms
others significantly with the highest classification
accuracy (95.2%), better than VGG16 (89.4%) and
InceptionV3 (91.8%). This performance gain is due to the
residual learning style of ResNet, where skip connections
can be used to attenuate the fading gradient. This
structural novelty enabled the model to learn complex
hierarchical features (e.g., texture of pustules and
distribution patterns of lesions) successfully while
keeping its performance from degrading when trained on
a relatively small dataset, as few as 2773 images.

Comparison with State-of-the-Art Studies

In order to verify the effectiveness of our method, we have
compared our results with the recent standards in the
literature (Table 3). Although earlier research has proven
that Al can be used in the detection of pox, the research is
usually limited in scope or accuracy in multi-class
detection.

Binary vs. Multi-Class: Papers, like Ali et al. (2022) and
Heidari et al. (2023), provided high accuracy (>97%) but
only concentrated on binary classification (Monkeypox
vs. Healthy). Although statistically significant, these
models are not clinically applicable in practice, where
physicians need to discriminate Monkeypox from visually

similar diseases such as Chickenpox. Our model fills this
gap by attaining high accuracy (95.2%) on a more
challenging four-class task.

Architecture comparison: In a comparable multi-class
work, Ahmed et al. (2024) described an approach to reach
94.0% accuracy with a combination of models. It was
also more accurate (95.2%) and less computationally
intensive, as it can be used in a mobile embedded
scenario, being based on a single architecture ResNet50.
Conversely, the classification performance in this study
was similar to or greater than that of Jaradat et al. (2023),
who achieved 93% with MobileNetV2; our model
exhibits enhanced sensitivity (Recall: 96.5%) for Active
Monkeypox cases.

Study | Methodol | Classe | Accur | Limitatio
ogy s acy ns

Ali et | VGG19 2 97.5% | Limited to

al. (Transfer | (Binary binary

(2022) | Learning) |) diagnosis;
No
different
diagnosis

Jarad | MobileNe | 2 93.0% | Lower

at et | tV2 (Mpox, accuracy;

al. C-Pox, missed the

(2023) Health measles

y) class

Ahme | Ensemble | 4 94.0% | High

d et al. | CNN (Multi- computati

(2024) Class) onal cost
(Ensembl
e)

Propo | ResNet50 | 4 95.2% | Highest

sed + Web | (Includ multi-

Metho | Applicati | ing class

d on Measle accuracy

s) +  Real-

time
deployme
nt

Table 3: Comparison with Existing Studies

Clinical Implications

The clinical outcome of the model that differentiates
between Monkeypox and Measles with an accuracy of
93% is a positive clinical outcome. The most common
cause of misdiagnosis in the first stage of triage is the
vesicular stage of the Chickenpox that is visually
comparable to the pustular stage of Monkeypox. Although
in our Confusion Matrix, an overlap occurred (3.5% of
cases of Chickenpox resulted in false positives of
Monkeypox), the system could distinguish between the
flat maculopapular rash of Measles (and raised lesions of
pox viruses). This implies that the ResNet50 model has
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biomarkers, which are required to be employed to screen
cases appropriately, which can relieve strain on PCR
testing labs.

Feasibility for Low-Resource Deployment

One of the most important contributions of this work is
the possibility to fill the gap between theory and practice.
Highly accurate AI models are usually computationally
expensive and need the use of a GPU infrastructure that
may not be available in remote health centers. Through
pipeline optimization, we were able to obtain an average
of 1.2 seconds per image processing time on a typical
cloud platform based on a regular CPU. This, combined
with a low upload latency (Less than half a second on 4G),
proves that the system can be used effectively as a tele-
dermatology screening tool in endemic areas that have
little laboratory infrastructure.

6. LIMITATIONS AND FUTURE DIRECTIONS

Despite these positive results, there are flaws. First of all,
the dataset size ( N=2,773 ) is clinically valid, yet on the
other hand, it is quite small as compared to general vision
datasets, which can limit the generalizability of the results
in rare subtypes of skin. Second, we were not very strict
on the choice of varying skin colors, but a special
algorithmic bias audit is needed to ensure similar
performance in all the Fitzpatrick skin types. Further
studies suggest using the model with TensorFlow Lite
(TFLite) to ensure that inferences can be completed both
offline and on-device, to ensure that the model is made
available in regions with inconsistent internet access.
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