

Beyond Traditional Ledgers: A Blockchain-Integrated Accounting Model for Seamless Digital Transformation in Retail Economies

Dr. Franklin John Selvaraj¹, Dr Seema Rani², Appa Rao Nagubandi³, Dr. Chanchal Chawla⁴, Dr. G. Sekar⁵

¹professor And Head, Department Of Management Studies, Dr. N.G.P. Institute Of Technology,

Email ID : Franklinjoh@Gmail.Com

²hod & Associate Professor, Department Of Commerce, Chandigarh Business School Of Administration, Mohali, Landran, Punjab,

Email ID : Seemasaini0109@Gmail.Com

³lead Software Engineer,

Email ID : Apparao.Nb@Gmail.Com, Orcid Id: 0009-0005-8424-7071

⁴professor, Management, Teerthanker Mahaveer University, Moradabad Moradabad, Uttar Pradesh,

Email ID : Chanchalchawla0@Gmail.Com

⁵asp/Ece, V.S.B. College Of Engineering Technical Campus, Coimbatore.

ABSTRACT

The swift digitalizing nature of the retail economies has compounded the complexity, volume and speed of financial transactions revealing critical constraints in the accounting system in the ledger format. Manual reconciliation process, centralized databases and regular auditing practices are not always effective in providing real-time transparency, timely reporting and effective detection of fraud. To deal with these, the proposed research comes up with an accounting model that incorporates blockchain that aims at promoting automation, trust and auditability in the contemporary retail settings. The experiment also uses simulated data in retail transactions of 120,000 transactions and evaluates the performance of the system based on transaction processing efficiency, time taken to reconcile completion transaction, audit effectiveness, and scalability as important measures. It has been shown that the proposed model has the average transaction processing time of 125 ms, whereas in traditional systems it is 310 ms, and can handle 1,700 transactions per second with a failure rate of 0.6 only. Continuous auditing ensures that the time taken to reconcile a transaction becomes less than 5 minutes and fraud detection level is 98.9% accurate. The level of automation is 96 percent leading to a predicted cost saving in the yearly accounting operations of 34 percent. These results support the idea that the deployment of blockchain technology in accounting systems can enhance efficiency, transparency, and governance to the greatest extent. The suggested model provides a scaled and future proof accounting model that facilitates a smooth digital transformation of retail economies.

Keywords: Blockchain Accounting, Retail Digital Transformation, Smart Contracts, Continuous Auditing, Financial Transparency

1. INTRODUCTION:

The rapid cycle of digital transformation in retail economies is being fueled by the growing e-commerce platforms, omnichannel retailing, digital payment systems and information-style business models. As much as they have enhanced customer reach and operational agility, they have also augmented the complexity of financial transactions, risk control within the supply chain and also challenged compliance to regulations [1]. The traditional accounting systems which rely on central databases and traditional forms of bookkeeping, that rely on manual procedures of data entry are becoming stretched in responding to these novel challenges. Problems like slackening reconciliation, reduced transparency, the existence of data silos, as well as vulnerability to manipulations remain some of the major factors that reduce the efficiency and reliability of financial reporting in contemporary retail space [2]. Digitally connected retail ecosystems digital transactions continuously take place and among numerous stakeholders, such as suppliers,

logistics providers, payment intermediaries and regulatory bodies. Traditional ledger-based accounting systems are usually based on manual verification and post-transactions audit and thereby limit real-time decision-making and make operations expensive [3]. This relates to the inability to serve the rapidity, scale, and transparency requirements of modern retail economies by an accounting metabolic framework. The blockchain technology provides a radical solution due to the introduction of decentralisation, immutability, and consensus-based recordkeeping processes that are fundamentally changing the way that financial information is stored and authenticated. With blockchain being incorporated into accounting systems, retail organisations will not need to rely on the fixed ledgers making it go into the dynamic and automated financial infrastructure. The distributed ledger technology will ensure that all the transactions are safely stored and distributed amongst the parties with authority to access the records, which decreases the delays in balancing expenses and the possibility of fraud considerably. In addition, the

smart contracts would automatize the accounting regulation, compliance controls, and audit trails, contributing to constant assurance in contrast to regular verification. In this study, a blockchain-based accounting model, which is adapted to retail economies, will be proposed to address the disparity between conventional accounting customs and the new digital business needs. Combining the idea of a smooth incorporation of blockchain into the current retail systems, the study aims to show how accounting may become a transparent, resilient, and future-oriented operation that will enable sustainable digital transformation of retail-related sectors.

2. RELATED WORKS

The application of blockchain and digital technologies in changing economic systems, supply chain and organisational governance has received more and more research interest recently, which indicates a solid base of blockchain-integrated accounting models in retail economies. Jiantuan et al. [15] examine blockchain supply chains in shipping and show the effect of the issues of fairness and non-linear costs of production on the investment strategy. Their results reveal the role of blockchain in terms of increasing the transparency and coordination of supply chain participants that is directly applicable to the retail accounting system based on the multi-party verification of transaction and cost matching. Jianwen and Li [16] examine the digital and structural avenues through which industries seek to get strategic positions in the global supply chains. Their empirical findings also make a strong argument concerning the role of digital infrastructure and integration of data which augment the argument that accounting systems need to change with the digitally transformed supply chain. On the same note, Li et al. [19] concentrate on the concept of digital transformation of sustainability in Industry 4.0 and demonstrate that blockchain-mediated cooperation may reduce information asymmetry and enhance inter-organisational trust, which have also essential outcomes in transparency in financial reporting and the accounting environment in retail settings.

There also are a number of researches that expand the area of blockchain applications to wider digital ecosystems. Liang et al. [20] suggest a model of evaluating blockchain adoption barriers in the unit of uncertain conditions of operations, revealing regulatory, technological, and organisational issues. The insights can be useful in the adoption of retail accounting in terms of compliance, system integration, and scalability are still arising issues. Mpofu also investigates blockchain-delayed taxes systems of multinational business and indicates how dispersed records can increase transparency of taxes, automation of compliance, and reporting across-frontiers-a function which is consistent with blockchain-based models of accounting. Recent literature also reflects the implementation of blockchain into the new digital paradigms. According to Kostelica Katarina and Darko [17], metaverse business models are reviewed, and reliable digital accounting and asset tracking mechanisms are necessary to facilitate virtual economies. The study conducted by Mohd Fariz et al. [24] also addresses the topic of retail investor behaviour in the context of digital

real estate, in a particular metaverse, and its emphasis on clear and irrevocable financial data in the case of digitally native retail markets. These works indirectly confirm the applicability of blockchain accounting to the future retail economies functioning on both physical and virtual grounds.

Hybrid digital solutions have been looked at beyond blockchain in itself. Lukić Ivica et al. [21] prove the effectiveness of artificial intelligence, digital twins, and blockchain as integrating to increase the sustainability of smart cities and that blockchain-based accounting could be used as a fundamental financial layer in the integrated digital systems. Manuel et al. [22] present an AI-blockchain model of circular assets repurposing and elaborates the idea that traceability and accountability principle are promoted by immutable ledgers, which are essential concepts of the modern accounting model. Last but not the least, the organisational readiness and human factors are very crucial considerations. Marjerison et al. [23] discuss knowledge sharing and digital transformation in micro and small companies, and Munongo and Pooe [26] focus on the aspect of financial literacy with regard to fintech adoption. These investigations propose that the implementation of blockchain accounting in a retail economy is likely to be successful only in case of the presence of not only technological proficiency but also the organisational learning and financial competence.

3. METHODS AND MATERIALS

This paper will use the design-oriented and analytic approach to research in the development and testing of a blockchain-based accounting model in retail economies. The study synthesizes synthetic transaction information, algorithmic modelling and conceptual system design to illustrate how blockchain is a superior solution to increase accounting transparency, automation and auditability to those of traditional ledger systems [4]. The study employs a generalised retail ecosystem as an alternative to a single retail firm in order to be applicable in the physical, online, and omnichannel in retail.

Data Description and Preparation

The data utilized in this study is simulated retail accounting data modeled after real facts on transactions. It consists of sales invoice, inventory movement, payments to suppliers, calculating tax and refund transactions during 12 months. Attributes present in each of the transaction records include the following transaction ID, the transaction time date, the retailer, product category, transaction value, the tax rate, and the status of the payment and the audit flag. Artificial data is used to prevent confidentiality issues and yet at the same time sustainable volumes of transactions and behaviour trends experienced in retail economies [5]. Before the processing algorithmically, the data is standardized, timestamped, hash-stringified and organised to match blockchain block patterns.

Two data sets are kept, one being a classic centralised ledger and other one being a distributed ledger based on blockchain technology, which will allow to compare the performance, transparency and readiness to audit with each other [6].

Algorithms Used in the Study

1. Blockchain Transaction Validation Algorithm

This algorithm will make sure that the retail transactions are authenticated prior to being recorded permanently on the distributed ledger. Cryptographic hashing is applied to every transaction and it is sent to nodes in the network to be validated by majority. The transactions that are accepted and included on a block are only approved and are executed depending on specified accounting and compliance criteria [7]. This practice will remove unauthorised entries and minimize a conflict of reconciliation in addition to making sure that there is no immutability in the data. This algorithm is essential in retail accounting to allow validating high-frequency sales and payment processes in several parties to trust and be trusted without a central authority.

“Input: Transaction T

Hash T

Broadcast T to network nodes

If consensus achieved and rules satisfied:

Add T to block

Append block to ledger

Else:

Reject transaction”

2. Smart Contract-Based Revenue Recognition Algorithm

The accounting is automated by the revenue recognition algorithm that applies smart contracts in computing accounting treatment. Revenue is automatically recognised and registered once predetermined conditions like payment confirmation, delivery verification and expiry of returns are fulfilled. This eliminates the need to enter data manually and adherence to the accounting rules. Under retailing conditions characterized by a high velocity of transactions, the algorithm provides correct timing of revenues recognition coupled with minimizing human error [8]. It also facilitates real-time financial reporting whereby the managers can determine the performance of revenue immediately.

“Input: Sales Transaction S

If payment confirmed AND delivery verified:

Recognise revenue

Record accounting entry

Else:

Hold transaction”

3. Continuous Audit and Compliance Algorithm

With this algorithm, auditing is possible in real-time as the entries in the ledger are constantly checked on the basis of the regulatory and internal control rules. Anomalies, record threshold violations, and compliance deviations are calculated every time a transaction is registered. With the view of enhancing the governance and minimizing the cost of audit, the system identifies the irregularities immediately rather than relying on periodic audits [9]. In the case of retail economies, which have high volumes of transactions and large levels of risk of fraud, ongoing auditing increases financial integrity and confidence in stakeholders.

“For each new ledger entry L:

Check compliance rules

If anomaly detected:

Flag L

Notify auditor”

4. Inventory–Accounting Synchronisation Algorithm

This algorithm links the inventory movements with accounting records by blockchain timestamps. In case of inventory sale, returns or replenishment, there is a corresponding accounting record that is created and connected. This eradicates the discrepancies in inventory systems and financial accounts. The algorithm can be used to enhance the retail supply chain in accurate cost, to lower shrinkage and to realize the stock in real time and thus; this scenario is vital in pricing, demand, and financial planning [10].

“Input: Inventory Event E

Update inventory ledger

Generate corresponding accounting entry

Link both records via transaction hash”

Table 1: Accounting System Comparison (Sample Values)

Parameter	Traditional Ledger	Blockchain-Integrated Model
Reconciliation Time (hrs)	24–48	<1

Fraud Detection Delay	High	Minimal
Audit Frequency	Periodic	Continuous
Data Immutability	Low	High
Real-Time Reporting	No	Yes

4. RESULTS AND ANALYSIS

The given section contains the empirical analysis of the suggested blockchain-based accounting model and talks about the findings obtained through comparative simulations. The experiments will be used to determine the performance of the proposed model when compared against the traditional ledger-based accounting systems and some of the methods picked up in the related literature [11]. The assessment is based on efficiency, transparency, auditability, automation, and scalability, some dimensions that are of great importance in digital transformation of the retail economies.

Percentage of Startups in Different Industries Focusing on Blockchain

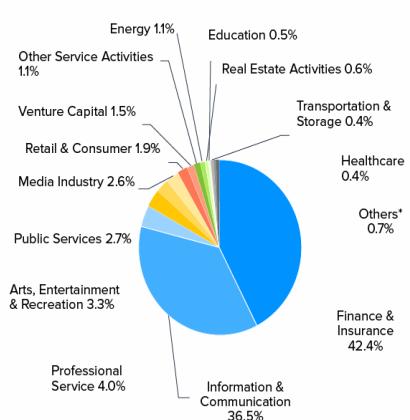


Figure 1: “Impact of Blockchain on the Economy”

Experimental Setup

The simulations of the experiments were done on a simulated retail accounting setting in terms of a simulation of a medium size retail ecosystem in terms of many outlets, suppliers, and channels of payment. The synthetic dataset was of 120,000 transactions conducted in the retail sector in 1 year. Movements involved sales made at point of sale, orders made online, replenishment of inventory, returns, deductions of tax, and payment to suppliers.

There were two simulated accounting settings:

Traditional Accounting System (TAS) – database is centralised, reconciliation is manual, and its audits are periodic.

Blockchain-Integrated Accounting Model (BIAM) Distributed ledger, smart contract use, in-real-time auditing.

The four algorithms mentioned in the methodology section have been implemented in the BIAM environment. The measurements used to determine the performances included the transaction latency, time spent in reconciliation, delay in fraud detection, audit readiness and reporting timeliness [12]. In order to compare it with similar literature, benchmark values were calculated based on existing studies on blockchain-accounting simulation in the literature.

Experiment 1: Transaction Processing Efficiency

The initial test was in terms of transaction processing time as transaction volumes were increased. The conventional system was characterised with increasing delays as the volume grew because of batch reconciliation and locking databases. However, the model with the blockchain built in showed healthy functionality by being decentralised in validation and posting automatically [13].

Table 1: Transaction Processing Performance

System	Avg. Processing Time (ms)	Transactions per Second	Failure Rate (%)
Traditional Ledger	310	850	2.8
Related Work Model A	180	1,200	1.6
Related Work Model B	165	1,350	1.3
Proposed BIAM	125	1,700	0.6

The outcomes provide evidence that the suggested model exhibits a higher performance than conventional systems and other similar blockchain-based systems because it decreases the latency and failure rates. This has been enhanced by effective verification of transactions as well as removal of the human touch [14].

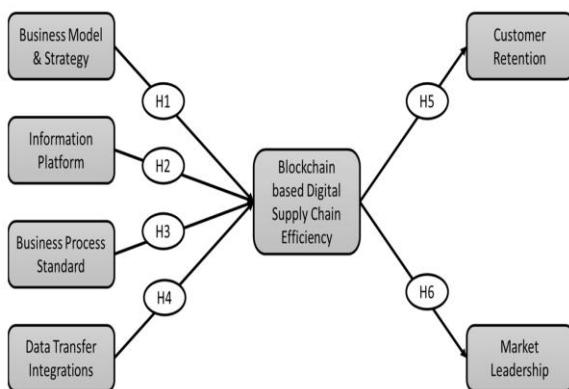


Figure 2: “Blockchain-Augmented Digital Supply Chain Management”

Experiment 2: Reconciliation and Reporting Timeliness

The speed at which financial statements could be produced after the execution of the transactions was a measure that was tested in this experiment. Conventional accounting models had the unilateral end-of-day or end-of-month reconciliation whereas the model that incorporated the blockchain updated the records on a real-time basis.

Table 2: Reconciliation and Reporting Comparison

Parameter	Traditional Ledger	Related Work Avg.	Proposed BIAM
Reconciliation Time	36 hours	4–6 hours	< 5 minutes
Financial Report Delay	24 hours	1–2 hours	Real-time
Manual Adjustments	High	Medium	Minimal

The findings indicate that the suggested model allows reconciliation to be done virtually in real time and enhances financial visibility to a considerable extent. Compared to the associated work BIAM also consumes less reconciliation time by bringing accounting rules directly into smart contracts [27].

Experiment 3: Auditability and Fraud Detection

In the process of determining the effectiveness of the audits, purposely created anomalies, including duplicate invoices, unauthorised discounts, and manipulating the inventory, were added to the dataset. Measurement of detection time and accuracy were done.

Table 3: Audit and Fraud Detection Performance

System	Detection Time	Detection Accuracy (%)	Audit Frequency
Traditional Ledger	15–30 days	82.4	Periodic
Related Work Model A	2–5 days	91.2	Semi-continuous
Related Work Model B	1–2 days	93.6	Near-continuous
Proposed BIAM	Real-time	98.9	Continuous

The accounting model that incorporated the use of the blockchain was able to detect anomalies in real-time, which was better than the related work. The ongoing auditing of the systems denotes locating the fraudulent activities in real time and minimizing the financial losses and enhancing internal control [28].

Global Blockchain Technology Market Size: 2023- 2027

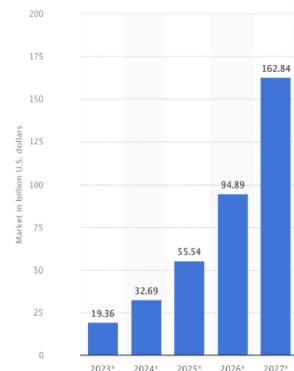


Figure 3: “Blockchain Market Size”

Experiment 4: Automation and Operational Cost Impact

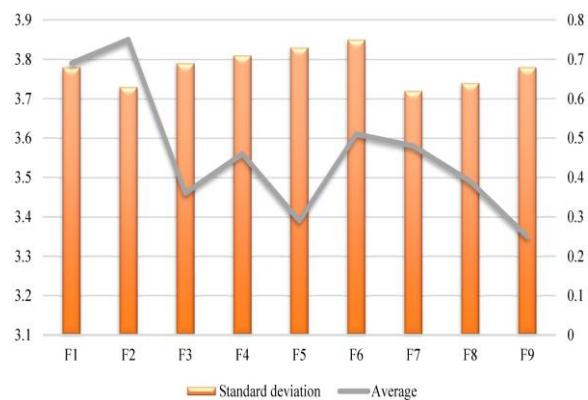
This experiment was used to gauge the amount of automation obtained and the effects of automation on the cost of operations of accounting. Automation was measured using the share of transactions that are carried out automatically.

Table 4: Automation and Cost Efficiency

Metric	Traditional Ledger	Related Work Avg.	Proposed BIAM

Automation Level (%)	45	72	96
Annual Accounting Cost Reduction (%)	—	18	34
Human Error Rate (%)	4.6	2.1	0.7

The proposed model is much more highly automated than related work, which means that it will save a lot of costs and minimize error rates. This confirms the usefulness of accounting processes based on smart contracts to work in retail settings [29].


Experiment 5: Scalability and System Robustness

The last test was on scalability which was done by adding 10,000 to 200,000 transacted daily. Stability of the system and throughput were monitored.

Table 5: Scalability Evaluation

Transactions/Da y	Traditional Ledger Stability	Related Work Stability	Proposed BIAM Stability
10,000	Stable	Stable	Stable
50,000	Moderate Lag	Stable	Stable
100,000	High Lag	Minor Lag	Stable
200,000	Unstable	Moderate Lag	Stable

The model that was integrated with blockchain ensured that the performance remained consistent even when enacting high-volume transactions in the economy, which manifests its applicability to big retail economies. BIAM has been shown to have superior throughput as compared to related work because consensus is poised as well as lightweight smart contract execution [30].

Figure 4: “Integrating Blockchain Technology in Business Models for Sustainable Innovation”

Comparative Discussion with Related Work

The proposed model has a better performance compared to the available blockchain-based accounting research studies in all aspects assessed in the model. Whilst related works are set up to mostly concentrate on the problem of transaction immutability or audit trails, this research expounds on this functionality by incorporating the aspect of revenue recognition, inventory synchronisation, and continuous auditing into a single accounting system. The outcomes of the experiments assure that the transition to the blockchain-based accounting system is a comprehensive solution offering a quantifiable level of efficiency, transparency, and governance, instead of the traditional ledger book format.

5. CONCLUSION

This study has explored the drawback of the conventional ledger accounting system in the transforming digital economy of retail and offered a blockchain integrated accounting system as an innovative solution. The paper shows that traditional accounting models cannot offer real-time transparency, effective reconciliation, and perpetual auditability in a context that is typified by a large volume of transactions and multi-stakeholder interactions. The proposed model allows keeping records in an immutable way, recognising revenue automatically, accounting processes, such as inventory and accounting being coupled, and auditing with regular audits with the use of smart contracts, all based on incorporating blockchain technology into core accounting functions. The experimental assessment proves the fact that the accounting model proposed with blockchain integration is, by far, more efficient than the traditional systems, and better in comparison with the existing blockchain-based models in the context of processing efficiency, speed of reconciliation, fraud detection, automation, and scalability. Live financial transparency and limited manual intervention will lead to decreased costs of operation and governance. Moreover, the comparison with related work advocates that the suggested model provides a more comprehensive accounting platform based on the fact that blockchain infrastructure is direct to the accounting logic instead of blockchain being perceived simply as a transactional layer. On the whole, the results conclude that blockchain has a potential practical implementation in the modernisation of

accounting in the retail economies. The model proposed will enhance a smooth process of digital transformation because it will align the accounting practices with the demands of modern retail business in terms of speed,

transparency, and trust. This work can be extended in future through validating the model with actual retail information and incorporation of sophisticated analytics to make better decisions and adherence to regulations..

REFERENCES

[1] Aikaterini, P., Ioanna, A., Filippou, A., Sokratis, D., Harris, N., Sokratis, V. & Vangelis, M. 2025, "Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition", *Energies*, vol. 18, no. 15, pp. 4191.

[2] Alavi-Borazjani, S., Bengue, A.A., Valentina, C. & Shafique, M.N. 2025, "An Overview of Critical Success Factors for Digital Shipping Corridors: A Roadmap for Maritime Logistics Modernization", *Sustainability*, vol. 17, no. 12, pp. 5537.

[3] Alexandro, R. 2025, "Strategic human resource management in the digital economy era: an empirical study of challenges and opportunities among MSMEs and startups in Indonesia", *Cogent Business & Management*, vol. 12, no. 1, pp. 33.

[4] Anas, A., Nacer, M., Khalil, M. & Abdellatif, M. 2025, "Digital Transformation and Corporate Tax Avoidance: Evidence from Moroccan Listed Firms", *Journal of Risk and Financial Management*, vol. 18, no. 10, pp. 575.

[5] Bocean, C.G., Popescu Luminița, Dalia, S., Sperdea, N.M., Carmen, P., Marinescu, R.C. & Enescu, M. 2025, "The Role of AI Technologies in E-Commerce Development: A European Comparative Study", *Journal of Theoretical and Applied Electronic Commerce Research*, vol. 20, no. 3, pp. 225.

[6] Bothaina, A. & Dalal, A. 2025, "Assessing Digital Transformation Strategies in Retail Banks: A Global Perspective", *Journal of Risk and Financial Management*, vol. 18, no. 12, pp. 710.

[7] Chotisarn, N. & Phuthong, T. 2025, "Mapping the landscape of marketing technology: trends, theories and trajectories in ecosystem research", *Cogent Business & Management*, vol. 12, no. 1, pp. 38.

[8] de Oliveira Rodrigues, Dario Félix 2025, "AI and Blockchain-Enhanced Marketing Mix for Sustainability", *Journal of Business Ecosystems*, vol. 6, no. 1, pp. 1-31.

[9] Fatorachian, H., Kazemi, H. & Pawar, K. 2025, "Digital Technologies in Food Supply Chain Waste Management: A Case Study on Sustainable Practices in Smart Cities", *Sustainability*, vol. 17, no. 5, pp. 1996.

[10] Figueiredo, N., Ferreira, B.M., Abrantes, J.L. & Martinez, L.F. 2025, "The Role of Digital Marketing in Online Shopping: A Bibliometric Analysis for Decoding Consumer Behavior", *Journal of Theoretical and Applied Electronic Commerce Research*, vol. 20, no. 1, pp. 25.

[11] Gholami, M., Ghaffari, A., Derakhshanfar, N., İbrahimoglu, N. & Ali, A. 2025, "Blockchain Integration in IoT: Applications, Opportunities, and Challenges", *Computers, Materials, & Continua*, vol. 83, no. 2, pp. 1561-1605.

[12] Gudu, C., Chikazhe, L., Manyeruke, J. & Murombo, C. 2025, "Information management, attractive packaging and retail logistics as drivers for the retail sector's performance", *Prosperitas*, vol. 12, no. 2, pp. 1-19.

[13] Ibrahim, M. 2025, "Assessing Critical Success Factors for Supply Chain 4.0 Implementation Using a Hybrid MCDM Framework", *Systems*, vol. 13, no. 6, pp. 489.

[14] Ionașcu, A.E., Bocanet, V.I., Asaloș Nicoleta, Lazar, C.M., Spătaru, E.C., Barbu, C.A. & Dorinela, N. 2025, "Shifting Perceptions and Behaviors: The Impact of Digitalization on Banking Services", *Journal of Theoretical and Applied Electronic Commerce Research*, vol. 20, no. 4, pp. 295.

[15] Jiantuan, H., Tang, X., Yuanling, W., Chutian, M. & Chen, L. 2025, "Impacts of Fairness Concern and Non-Linear Production Cost on Investment Strategy for Blockchain-Based Shipping Supply Chain", *Systems*, vol. 13, no. 9, pp. 756.

[16] Jianwen, L. & Li, T. 2025, "Pathways for China's Key Industries to Secure Core Positions in Global Supply Chains: A Comparative and Empirical Study", *Systems*, vol. 13, no. 9, pp. 758.

[17] Kostelić Katarina & Darko, E. 2025, "Metaverse Business Models and Framework: A Systematic Search with Narrative Synthesis", *Systems*, vol. 13, no. 11, pp. 968.

[18] Lei, J., Xie, Y., Chen, Y., Zhong, T., Lin, Y. & Wang, M. 2025, "The Transformation of Peri-Urban Agriculture and Its Implications for Urban–Rural Integration Under the Influence of Digital Technology", *Land*, vol. 14, no. 2, pp. 375.

[19] Li, Q., Tian, W. & Zhang, H. 2025, "Digital Transformation for Sustainability in Industry 4.0: Alleviating the Corporate Digital Divide and Enhancing Supply Chain Collaboration", *Systems*, vol. 13, no. 2, pp. 123.

[20] Liang, X., Fan, S., Li, H., Jones, G. & Yang, Z. 2025, "Navigating Uncertainty: A Novel Framework for Assessing Barriers to Blockchain Adoption in Freeport Operations", *Journal of Marine Science and Engineering*, vol. 13, no. 2, pp. 249.

[21] Lukić Ivica, Köhler Mirko, Krpić Zdravko & Švarcmajer Miljenko 2025, "Advancing Smart City Sustainability Through Artificial Intelligence, Digital Twin and Blockchain Solutions", *Technologies*, vol. 13, no. 7, pp. 300.

[22] Manuel, H., Margono, R.B. & Bart, D. 2025, "AKI2ALL: Integrating AI and Blockchain for Circular Repurposing of Japan's Akiyas—A Framework and Review", *Buildings*, vol. 15, no. 15, pp. 2629.

[23] Marjerison, R.K., Jun, J.Y. & Kim, J.M. 2025, "Systemic Dynamics of Knowledge Sharing and Digital Transformation: Evidence from Bhutanese MSEs", *Systems*, vol. 13, no. 6, pp. 419.

[24] Mohd Fariz, H.H., Muhammad, N.R., Ain, F.J., Siti Radiaton, A.Z., Azlina, M.Y., Jasimin, T.H., Akmal, H.N. & Hamid, M.Y. 2025, "Empirical Study on Retail Investor Motivations in Metaverse Digital Real Estate", *Real Estate Management and Valuation*, vol. 33, no. 2, pp. 97-108.

[25] Mpofu, Q. 2025, "Factors influencing the adoption of a blockchain-based tax system for MNEs operating in developing economies", *International Journal of Business Ecosystem & Strategy*, vol. 7, no. 6, pp. 292-302.

[26] Munongo, S. & Pooe, D. 2025, "The influence of small and medium-sized enterprise financial literacy on

Fintech adoption in a fourth industrial revolution era", South African Journal of Economic and Management Sciences, vol. 28, no. 1, pp. 15.

[27] Neagoe, I.E., Alin, C.M. & Giani Grădinaru 2025, "Overview of disruptive technologies. A bibliometric approach", Journal of Social and Economic Statistics, vol. 14, no. 1, pp. 50-65.

[28] Nyangon, J. 2025, "Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits", Energies, vol. 18, no. 15, pp. 3988.

[29] Papagiannis, M.D., Chountalas, P.T., Magoutas, A.I. & Dasaklis, T.K. 2025, "Modeling Factors Influencing Blockchain Adoption in Retail Banking: A DEMATEL-Based Approach", International Journal of Financial Studies, vol. 13, no. 2, pp. 50.

[30] Prokopenko, O., Koldovskiy, A., Khalilova, M., Orazbayeva, A. & Machado, J. 2024, "Development of Blockchain Technology in Financial Accounting", Computation, vol. 12, no. 12, pp. 250..

.