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ABSTRACT 

Partial differential equations (PDEs) frequently result when solving the valuation of 

financial derivatives, in particular options, that may arise due to the models, including the 

Black Scholes framework. Where to consider the solution of these PDEs numerically, which 

is often preferable over an analytical solution that is often not available in case of more 

complex instruments, this paper discusses the application of finite difference methods 

(FDMs). We talk about explicit, implicit and Crank Nicolson schemes involving European 

and American option pricing. Their implementation, stability and convergence are 

examined. The results show that finite difference offers quick and versatile means of 

valuation of options especially when the boundary conditions or payoff is not standard. 

1. INTRODUCTION 

Financial industries have largely been dependent on mathematical modeling and computational tools in valuing complex 

financial inventions. Of these, especially options and other derivatives have become quite prominent in their applications in 

risk-hedging, trading on market movements and design of investment products. Options valuation is a classical finite-

mathematical problem, and the study of the problem has a history as old as the seminal time when Black and Scholes 

formulated the issue way back in early 1970s. Their price formulas of European options were a breakthrough in that it gave 

a closed-form expression based on partial differential equation (PDE) formulation. But in the advent of the financial market 

whose product set includes a wider variety of more exotic instruments e.g. American options, barrier options, path-dependent 

type derivatives, the inadequacies of closed-form solutions have come into greater focus. The analytical expressions of their 

prices unfortunately do not exist and strong numerical techniques have to be designed and used in places with more complex 

products [1]. 

Finite difference method (FDM) happens to be one of the broadly used numerical solutions to PDEs in option pricing. Finite 

difference methods approximate the continuously solved Black Scholes PDE and enable solution of the price and time grid 

consistent manner. The transformation allows financial engineers to estimate option values with considerable precision and, 

at the same time, take into account an extended array of features, including early exercise privileges, non-standard payoff 

structures and complex termination conditions. The most fundamental schemes in the finite difference method are the 

explicit, implicit, and Crank-Nicolson schemes and each one has its stability and accuracy benefits and costs of solving. 

Although the explicit approach seems intuitive to use and apply simple changes, the explicit approach also has a conditional 

stability that demands very tiny steps in time. Implicit and Crank-Nicols schemes, though more intensive in computations, 

are unconditionally stable and more accurate and thus they present a better choice in dynamic problems of the real world 

[10]. 

The relevance of PDE based numerical methods in finance is given the fact that they help model and solve stochastic 

processes used to describe the behavior of asset prices. An example is the Black-Scholes PDE that is the result of the 

underlying asset being modeled as a geometric Brownian motion which results in a parabolic PDE characterizing the time-

derivative of the option prices. Finite difference schemes discretize both space and time to form a regular lattice in which 

each lattice represents a potential state of the underlying asset and the dynamics between these states obey a system of 

difference equations to reflect that of the original PDE. These numerical solutions enable pricing, scenario analysis and stress 

testing in live environments which is especially important to risk management and regulation in turbulent markets [11]. 
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In addition, the use of the finite difference methods is not confined to vanilla options. Due to the possibility of an early 

exercise of American options prior to maturity, the problem is one of a free boundary PDE. This makes this happen in a way 

that it adds complexity, because this is also the stage where the exercise boundary should be identified at the same time as 

the value of the option. Methods to solve the resulting systems of linear complementarity problems include such techniques 

as the projected successive over-relaxation (PSOR) method to ensure that the value of the option satisfies the optimal exercise 

condition. The flexibility of the FDMs is appealing to financial theorists as well as to practitioners who are creating trading 

systems, pricing engines and risk platforms [12]. 

Since more complex financial models are created (i.e. those that consider stochastic volatility, interest rates and other jump 

diffusion processes), the associated PDEs grow too. Despite these difficulties, the finite difference methods have come out 

to be flexible and extendable [5]. The schemes and grid structures can deal with a wide variety of models and assumptions 

with modifications to their discretization schemes and grid structures. Furthermore, the increase in the speed of computers 

and parallel processing has drawn the practicality of using the same heavily in large-scale financial applications. 

In this paper we shall explore the applicability of finite difference strategies in a solution of PDEs to option pricing. Our 

attention will be paid to three basic schemes, i.e., explicit, implicit, and Crank Nicolson, comparing the way they work in the 

areas of pricing European and American options. The research implies implementation, error testing and a cross assessment 

of the strengths and weaknesses of each scheme. In this search we seek not only to describe the usefulness of finite difference 

methods to computational finance but also to illustrate their role in the solution of more practical problems in derivative 

pricing in which an analytic solution is not viable [4]. 

Novelty and Contribution  

Although finite difference methods have a long history in the field of computational finance, their future lies in an increase 

in accuracy, efficiency and flexibility in an ever changing world of finance. This is something new in its experiment since 

this experiment is done in an extensive assessment and head-to-head test of both explicit and implicit schemes and Crank-

Nicolson schemes particularly fit in European and American option pricing. In contrast with most of the previous literature, 

which is mainly focused on theoretical application, the work in this research paper has rigorous numerical experimentation 

in terms of sensitivity to grid resolution and convergence issues in addition to facing up to boundary conditions with a specific 

focus on ease of interpretation to a financial engineer [14]. 

Also, the ability to incorporate the PSOR algorithm into the Crank-Nicolson scheme used to solve pricing American option 

problem leads to the enhancement of the process of handling the early exercise option without hurting the computational 

efficiency [3]. The results indicate that this coupling enhances rate of convergence greatly without deviating the numerical 

stability. Visualization and error analysis is also detailed in the study which is sometimes not seen in the traditional 

mathematical treatments which gives a clearer understanding to a practitioner and a researcher. 

In addition to that, the contribution is in the provision of a modular and reproducible computational infrastructure and would 

be altered to route towards exotic options and the multi-factor models, in subsequent study. The constructed schemes are not 

only useful solutions to price vanilla derivatives, they are also the basis of expanding FDM methods into high-dimensional 

PDEs using operator splitting and sparse grid methods. Having closed the gap between theoretical intensity and immediate 

practice, this work adds a useful point of reference to financial analysts, quantitative developers, and scholars engaged in 

numerical finance [13]. 

2. RELATED WORKS 

In 2022 Gómez et al., [2] introduced the history of the option pricing theory has resulted in a lot of mathematical models 

whose aim is to quantify the market behaviors effectively. The main technological advance in this field was the derivation 

of partial differential equations to value options and this formed the basis on which numerical methodologies can be 

implemented. Numerical solutions Then as the financial instruments were more complicated, these equations could be less 

tractable using analytical means and numerical methods were required. Among all the methods suggested using numbers, 

the finite difference methods proved to be an all-round method that was computationally efficient in resolution of the 

governing differential equations in the pricing of derivatives. 

In 2021 B. Agaton et.al., [15] proposed the first attempts at numerical treatment of option pricing were applied in a relatively 

simple case of European options, due to the relatively simple boundary conditions and terminal payoff. These papers showed 

that under carefully tuned circumstances, finite difference schemes such as explicit and implicit schemes were able to report 

the solutions that agreed closely to the analytical ones. Nevertheless, these schemes performed relatively very differently 

with grid size and time steps configuration. Also it was acknowledged that explicit procedures were simple to put into use, 

but there were strict constraints on the stability of time advances whereas the implicit procedures provided high stability, 

however alleviated the need to solve linear systems in every time lawyer. 

Later studies dealt with valuation of American options, which came with more complexity because of the early exercise 

feature. The usual finite difference method was extended to suit the free boundary issue that lies in American options. 

Methods of this type included iteration procedures like projected relaxation methods in which the numerical scheme enforced 
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the early exercise constraint by dynamically altering the solution grid. They found that with such methods (those in 

combination with implicit or Crank-Nicolson time-stepping schemes) it was indeed possible to get accurate and stable 

valuations despite severe exercise boundaries. 

Finite difference methods sometimes produce relevant trade-offs between accuracy and computational cost in comparative 

analyses. One aspect of the Crank Nicolson scheme of note was that it was second-order accurate in time and space, and 

unconditionally stable. This method gained especially popularity in the area of financial engineering as it allowed this to be 

accurate without needing too detailed discretization. Besides making plain vanilla option prices, this scheme was also used 

to price options, including barriers, rebates and discrete dividends further illustrating versatility of finite difference schemes. 

Finite difference extensions to stochastic volatility, jump diffusion and local volatility models were as well discussed. Here 

the dimensionality and complexity of the PDEs was significantly greater than before and techniques of discretization and 

numerical solvers had to be innovated. The studies in this orientation were aimed at stability-preserving transformations and 

adaptive meshing in order to control the cost of computation with preserving accuracy. Non-uniform grids, especially, came 

to play an important role in solving high gradients around prime or early exercise boundaries, enhancing the quality of the 

numerical approximating without an equivalent increase in the computing burden. 

Along with the methodologic improvement, much concern was about the implementation and performance of finite 

difference algorithm. Parallel computing, Vectorization or matrix factorization optimization techniques were used to speed 

up the solution process. This was particularly critical when the application was in real-time e.g. pricing a large portfolio of 

derivatives or Monte Carlo simulations under the finite difference setting. A considerable level of demand was needed in the 

financial institutions, where more efficient and reliable computations had to be carried out in a shorter time. These studies 

aimed at addressing a tradeoff between algorithmic efficiency and the quality of numeric results. 

In 2022 S. Levendorskiĭ et.al. [7] suggested the relevance of finite difference approaches was confirmed empirically under 

diverse market conditions such as high-volatility scenarios, illiquid markets as well as stress-test conditions. Finite difference 

models adapted well in this situation, when market conditions are not ideal in such a manner. Such models were found to be 

more robust to changes in structure, and could be yet more easily adjusted, as compared to analytical models, which justifies 

their adoption in dynamic hedging and risk management systems. 

Developments in data-driven finance and more broadly data science have also caused more recent interest in classical 

numerical techniques, such as finite difference approaches, as they offer interpretability and can be used together with hybrid 

models. Researchers started to consider the combination of finite difference solvers and neural networks to approximate 

boundary conditions or to provide dimensionality reduction or to direction the solution procedure in nonlinear domains. Such 

hybrid approaches provided fresh means by which it was possible to improve on the accuracy and efficiency of numerical 

approximations, yet remain theoretically consistent with the context of PDE-based sciences. 

The body of literature ascertains the fact that finite difference techniques have been retained as a part of computational 

finance. Their development over the simple schemes of European option to much more complex systems of valuation of 

exotic derivatives and coping with multi-factor models reflects their flexibility and sustained practical applicability. The 

finite difference techniques have already enjoyed widespread use in pricing and risk estimation, so with the further 

enhancement of computational resources and the increasing complexity of financial instruments, they are bound to gain in 

importance, becoming both an indispensable instrument of academic research and operational practice [6]. 

3. PROPOSED METHODOLOGY 

To numerically solve the partial differential equation in option pricing, we start with the classical Black Scholes PDE: 

𝜕𝑉

𝜕𝑡
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 

The finite difference method discretizes both time and asset price space. We define a grid with nodes 𝑆𝑖 = 𝑖Δ𝑆, 𝑡𝑛 = 𝑛Δ𝑡, 
for 𝑖 = 0,1, … ,𝑀 and 𝑛 = 0,1, … , 𝑁. The option value at each node is denoted 𝑉𝑖

𝑛. 

For the explicit method, the discretized form becomes: 

𝑉𝑖
𝑛+1 = 𝑎𝑖𝑉𝑖−1

𝑛 + 𝑏𝑖𝑉𝑖
𝑛 + 𝑐𝑖𝑉𝑖+1

𝑛  

Where: 

𝑎𝑖 =
1

2
Δ𝑡[𝜎2𝑖2 − 𝑟𝑖], 𝑏𝑖 = 1 − Δ𝑡[𝜎2𝑖2 + 𝑟], 𝑐𝑖 =

1

2
Δ𝑡[𝜎2𝑖2 + 𝑟𝑖] 

The explicit scheme is conditionally stable. The CFL condition must be satisfied: 

Δ𝑡 ≤
1

𝜎2𝑖2
 

For the implicit method, we solve: 
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−𝑎𝑖𝑉𝑖−1
𝑛+1 + (1 + 𝑏𝑖)𝑉𝑖

𝑛+1 − 𝑐𝑖𝑉𝑖+1
𝑛+1 = 𝑉𝑖

𝑛 

Which results in a tridiagonal system of equations solved at each time step using methods like Thomas algorithm [8]. 

Crank-Nicolson combines both methods: 

𝐴 ⋅ 𝑉𝑛+1 = 𝐵 ⋅ 𝑉𝑛 

Where matrices 𝐴 and 𝐵 represent the implicit and explicit coefficients averaged over time. 

The boundary conditions for a European call are: 

𝑉(0, 𝑡) = 0, 𝑉(𝑆max, 𝑡) = 𝑆max − 𝐾𝑒−𝑟(𝑇−𝑡) 

And the terminal condition is: 

𝑉(𝑆, 𝑇) = max(𝑆 − 𝐾, 0) 

Grid construction is crucial. We choose: 

Δ𝑆 =
𝑆max

𝑀
,Δ𝑡 =

𝑇

𝑁
 

The second derivative in space is approximated by: 

𝜕2𝑉

𝜕𝑆2
≈
𝑉𝑖+1
𝑛 − 2𝑉𝑖

𝑛 + 𝑉𝑖−1
𝑛

(Δ𝑆)2
 

The first derivative in space is: 

𝜕𝑉

𝜕𝑆
≈
𝑉𝑖+1
𝑛 − 𝑉𝑖−1

𝑛

2Δ𝑆
 

Time derivative becomes: 

𝜕𝑉

𝜕𝑡
≈
𝑉𝑖
𝑛+1 − 𝑉𝑖

𝑛

Δ𝑡
 

For American options, the constraint: 

𝑉(𝑆, 𝑡) ≥ max(𝐾 − 𝑆, 0) 

is enforced. A linear complementarity problem arises: 

min(−𝑎𝑖𝑉𝑖−1
𝑛+1 + (1 + 𝑏𝑖)𝑉𝑖

𝑛+1 − 𝑐𝑖𝑉𝑖+1
𝑛+1 − 𝑉𝑖

𝑛, 𝑉𝑖
𝑛+1 −max(𝐾 − 𝑆𝑖 , 0)) = 0 

We solve this using Projected Successive Over-Relaxation (PSOR). The iterative update rule is: 

𝑉𝑖
(𝑘+1)

= max(max(𝐾 − 𝑆𝑖 , 0), 𝑉𝑖
(𝑘)

+ 𝜔 (
𝑅𝑖
𝐴𝑖𝑖

)) 

Where 𝑅𝑖 is the residual and 𝜔 ∈ (1,2) is the relaxation parameter. 

Convergence is measured using: 

 error = max
𝑖
 |𝑉𝑖

(𝑘+1)
− 𝑉𝑖

(𝑘)
| 

We iterate until: 

 error < 𝜖 
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FIGURE 1: FINITE DIFFERENCE METHOD FOR OPTION PRICING 

 

For Crank-Nicolson, we use a matrix system 𝐴𝑉𝑛+1 = 𝐵𝑉𝑛, where: 

𝐴 = 𝐼 −
1

2
Δ𝑡𝐿, 𝐵 = 𝐼 +

1

2
Δ𝑡𝐿 

And 𝐿 is the discretized PDE operator matrix. 

An exact solution for European call (to benchmark errors): 

𝑉(𝑆, 𝑡) = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)

𝑑1 =
ln⁡(𝑆/𝐾) + (𝑟 + 𝜎2/2)(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
, 𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡

 

RMSE is calculated by: 

RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

  (𝑉numerical − 𝑉exact )
2 

Stability is verified by observing changes as Δ𝑡 and Δ𝑆 are refined. 

We also conduct sensitivity analysis: 

Δ =
𝜕𝑉

𝜕𝑆
, Γ =

𝜕2𝑉

𝜕𝑆2
, Θ = −

𝜕𝑉

𝜕𝑡
 

These Greeks are approximated numerically: 
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Δ ≈
𝑉𝑖+1
𝑛 − 𝑉𝑖−1

𝑛

2Δ𝑆
, Γ ≈

𝑉𝑖+1
𝑛 − 2𝑉𝑖

𝑛 + 𝑉𝑖−1
𝑛

(Δ𝑆)2
, Θ ≈

𝑉𝑖
𝑛+1 − 𝑉𝑖

𝑛

Δ𝑡
 

This comprehensive methodology allows for flexibility and precision in modeling diverse options under deterministic 

volatility. The numerical schemes are validated using analytical benchmarks and error convergence tests. 

4. RESULT & DISCUSSIONS 

The finite difference technique was tested in terms of European option model, American option model, grid sizes and 

timestep of the explicit schemes, implicit schemes as well as the Crank Nicolson scheme. The numerical solutions were tuned 

into the exact analytical solution that existed in the European options. The feature of early exercise was taken into account 

based on the PSOR algorithm in American options and convergence behavior and the trend in price movement were used to 

verify the result. The base set of conditions was the strike price of 100, asset at the lower bound of 0 and maximum exposed 

to price of 200, volatility of 0.2, risk-free rate of 5 percent and a year of maturity [9]. 

Numerical solutions were compared with the analytical ones (where they were known) at several different value of assets in 

order to determine the accuracy and convergence of the methods. The output indicated that the explicit approach was 

intuitively simple but needed very small time intervals to be stable particularly, when the price of the assets turned higher. 

Conversely, at the larger time steps, both implicit and Crank-Nicolson schemes remained accurate with the Crank-Nicolson 

scheme best matching analytical solution in all the regions. The observation is illustrated as follows in Figure 2: Comparative 

Option Price Profile for Different Schemes where Crank-Nicolson output matches the benchmark curve perfectly whereas, 

the explicit method exhibits small oscillations especially in the strike price area. 

 

FIGURE 2: OPTION PRICE PROFILE FOR DIFFERENT SCHEMES (AT T=0) 

 

The freedom of early exercise until maturity in American option pricing produces a kink in the price function and was well 

described with the PSOR-improved finite difference schemes. The outputs were depicted on different time snapshots to see 

how the early exercise boundary developed. Figure 3: American Put Option Price Surface Over Time shows the exercise 

boundary moves closer to the money over time as the dates approach maturity and the timing during which the instrument 

can be exercised profitably becomes narrower. Incorporation of Crank-Nicolson method with PSOR did not only retain the 

shape of the boundary, but also reduced numerical noise which occurred in the implicit method, when selected coarse grids 

were used. 
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FIGURE 3: AMERICAN PUT OPTION SURFACE 

 

To further testify efficiency and the resource requirements of each scheme, an analysis was carried out computationally on 

both grid density and time-step size. Comparison run times of the simulation and memory used were noted between the three 

schemes. Table 1: Computational Cost Comparison of Finite Difference Schemes clearly indicates that in spite of using small 

amount of calculation time per iteration, the consumption time of explicit method was higher than that of the other methods 

and, on the other hand, the largest number of iterations taken by the explicit method in order to achieve convergence. Implicit 

was marginally slower but more stable, whereas Crank-Nicolson displayed a small increment in computational overhead 

because of averaging but was considered to be faster whereas it had less time steplength dependency. 

TABLE 1: COMPUTATIONAL COST COMPARISON OF FINITE DIFFERENCE SCHEMES 

Scheme Time per Iteration (ms) Iterations to Converge Total Runtime (s) 

Explicit 0.45 2200 0.99 

Implicit 0.89 980 0.87 

Crank-Nicolson 1.02 750 0.76 

 

The numerical stability of each of the methods was also analyzed as one of the crucial points. The explicit approach had a 

negative performance behavior because the approach lost efficiency the more moves it had to make, the greater the volatility, 

or the less the asset prices were no longer on a grid. The implicit and Crank enterprises schemes however had consistent 

results. This is shown in Figure 4: Stability Check of Option Value with Varying Time Steps, whereby the explicit method 

collapses past a certain point of a time step as opposed to the other two methods. 

 

FIGURE 4: OPTION PRICE VS. TIME STEP SIZE (STABILITY TEST AT S = 100) 
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Numerical comparison was the second level of analysis on the accuracy of prices made. Root mean square error (RMSE) 

was also computed using actual value and the analytical values of European options. The Crank-Nicolson produced the 

lowest RMSEs in a range of simulations and the implicit method resulted in second lowest RMSEs in a range of simulations. 

This type of precision is emphasized in Table 2: Accuracy Evaluation Using RMSE Values of European Call Option that 

displays the numerical discrepancies of the two schemes using the same grid and volatility. 

TABLE 2: ACCURACY EVALUATION USING RMSE VALUES FOR EUROPEAN CALL OPTION 

Scheme Grid Size (S × t) RMSE 

Explicit 100 × 1000 0.0184 

Implicit 100 × 1000 0.0076 

Crank-Nicolson 100 × 1000 0.0031 

 

More than numerical precision, graphical verifications of smoothness of the results and retention of forms was essential. In 

American put options in particular, large shifts in stock moves close to the early exercise boundary may result in oscillation 

problems or numerical artifacts (See exercise numerical error). When appropriately relaxed factors in the PSOR process were 

employed, then Crank-Nicolson method would always lead to smooth option value curves. The same could not be said of 

the explicit method, where, even in small sizes of the time step we have had irregular price gradients at the eddy. These 

results support the empirical popularity of implicit or semi-implicit approaches towards actual real-life American option 

engines. 

The three plots; Figure 2, Figure 3, Figure 4, are graphical evidence of the fact that the Crank-Nicolson method is much 

superior in terms of its accuracy, stability, and ability to follow the boundary. Similarly, Table 1 and Table 2 also provides 

numerical support on its computational and predictive superiority against explicit and implicit schemes. These findings are 

rather definitive in favor of the use of Crank-Nicolson-type finite difference scheme in the practical application of financial 

derivative modelling, especially where early exercise and non-linear pay-offs are present. 

5. CONCLUSION 

The finite difference techniques are one of the potent numerical techniques used in financial engineering to solve PDEs. 

They are especially useful in option pricing models in which analytical solutions cannot be obtained or are not feasible. 

Criteria of evaluating the methods used, Crank- Nicolson scheme has always proved to be better in terms of stability, 

convergence and accuracy. Explicit methods are easier, but do not allow so much flexibility in a practical sense. The 

incorporation of iterative solvers like PSOR allows, together with this, the incorporation of iterative solvers like the PSOR 

to make these methods suitable to exploit early seasonality arrangements in American options. 

Adaptive meshing, higher-order schemes, and parallel computing implementations might be further expansion in the future 

work, as a means to further improve the computational performance, and tackle more complex derivative structures, e.g. 

barrier and Asian options. 
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