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ABSTRACT 

In the constantly evolving field of information management systems, ensuring appropriate security 

measures to prevent cyber invasions is of paramount significance. The dynamic and complex nature 

of contemporary cyberthreats, especially in the context of the Internet of Things (IoT), frequently 

proves too much for traditional intrusion detection systems (IDS).  The current study emphasises 

on the difficulties of achieving high precision and real-time speed while maintaining data 

confidentiality. This study presents an new structure that combines Quantum Feedforward Neural 

Networks (QFNNs) with Contextual Rule-based Signature Detection (CRSD) to enhance IoT 

security. QFNNs leverage the principles of quantum computation to proficiently handle high-

dimensional IoT network data, resulting in important improvements in detection speed and 

accuracy. Meanwhile, the Contextual Signature Detection module dynamically adjusts detection 

processes based on contextual parameters, such as device behavior, network traffic patterns, and 

temporal fluctuations, ensuring flexible and precise threat identification. The proposed QFNNs 

were assessed utilizing IoT intrusion datasets and established greater presentation related to 

conventional neural networks and standard signature-based methods. The findings indicate notable 

developments in detection accuracy, a decrease in false positives, and developed adaptability to 

evolving threats. By integrating the computational advantages of quantum neural networks with the 

adaptability of contextual rule-based detection, this method proposals a scalable and resilient 

solution for safeguarding IoT networks. 

1. INTRODUCTION 

The frequency of IoT based attacks, most often those beginning with botnets, has increased in parallel with the use of IoT 

devices. Botnets signify the most common and severe type of cyberthreat [1] because they are used by remote attackers to 

infect IoT devices with malware [2]. Thus, enhancing effective strategies to categorize such threats has emerged as crucial 

because of the fast rate of attacks and the evolution of the approaches used by attackers. Since the emergence of malware, 

the utilize of machine learning (ML) and  deep learning (DL) methods leveraging full-time sequence data has increased 

dramatically. However, important shortcomings exist in present tools that important be addressed, and existing methods need 

improvements to efficiently detect and mitigate the threat of botnet attacks on IoT devices [3]. 
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Current developments in hybrid artificial intelligence (AI) approaches have recognized significant potential for improving 

IoT security. To progress detection models for IoT risks, such as botnets, numerous studies have recommended connection 

DL with evolutionary procedures [4]. These hybrid AI methods hold promise for striking a balance among detection accuracy 

and processing efficiency in resource-constrained IoT environments. One essential element in the fight against botnet threats 

is an intrusion detection system. By leveraging AI, IDSs can classify new kinds of botnet threats. IDS approaches are typically 

separated into two types: misuse-based approaches that rely on pre-existing signatures and anomaly-based approaches. 

Various IDSs, such as Snort and Suricata, are available and container mitigate the impact of botnet attacks. These analysis 

approaches examine malware behavior in specific contexts [5]; this knowledge is mainly useful for DL and ML procedures, 

which must continuously gather sequence data as the malware operates. In certain scenarios, these methods can uncover how 

the virus causes method damage [6]. Following a Distributed Denial of Service (DDoS) attack executed by an IoT botnet, 

organization approaches that learn from prior attacks can help the model more efficiently identify DDoS threats and botnet 

methods within the same environments [7]. 

AI methods are presently being utilized to detect IoT hazards due to their increasing detection abilities and capability to 

diagnose evolving patterns in threat mitigation strategies [8]. However, the removal of IoT risks faces several challenges, 

including the emergence of new variants of well-known attacks that are more problematic for security methods to detect. To 

address these challenges, DL and ML have been integrated into security devices to progress their presentation. Recent works 

have examined the use of AI solutions to improve threat identification in the IoT surroundings [9]. In addition, the mixed AI 

methods have proven their effectiveness in the improvement of feature selection and model presentation. For example, the 

current studies display that the integration of QFNNs with CRSD and DL is effective in the dissimilarity diagnosis of IoT 

networks [10]. DL is one of the important advancements in AI mainly beneficial for a range of practical applications to 

address challenging and non-linear data. 

1.1 Research of our work 

This research proposed a novel method to deal with the security issues in IoT network. By incorporating QFNN which takes 

advantage of the parallel computation capabilities of quantum computing the method is able to accomplish fast and accurate 

anomaly detection. In addition, a Contextual Rule-based Signature Detection mechanism is employment to identify and 

respond to threats by utilizing rules and context analysis. When combined, these methods advance the precision and 

effectiveness of IoT security systems while providing the capacity for large-scale IoT systems, although maintaining an 

effective defense against novel and sophisticated cyber threats. 

1.2 Motivation of this research 

The motivation for this research rises as the novel vulnerabilities in IoT methods emerge due to the rising usage and 

interconnectivity of IoT. It is a problematic that conventional security solutions cannot effectively solve the complexity and 

the nature of threats in IoT devices. To address this, we introduce QFNNs together with Contextual Rule-based Signature 

Detection to enhance the security of IoT. The quantum feature nodes of QFNNs create utilize of quantum calculating to 

procedure data effectively and to identify inconsistencies in a more effective way, while the rule based detection method 

provides a reliable way to identify known threats. This method is meant to provide an efficient, self-organizing and predictive 

security method to protect IoT systems from emerging threats. 

1.3 The major contributions of this paper: 

• To develop an innovative structure that merges Quantum Feedforward Neural Networks (QFNNs) with Contextual 

Rule-based Signature Detection (CRSD) to improve IoT security. 

• QFNNs leverage important calculation concepts to efficiently handle high-dimensional IoT system data, leading to 

growths in together detection speed and accuracy. 

• Finally QFNNs take been evaluated using IoT intrusion datasets and have demonstrated significantly higher 

presentation connected to conventional neural networks and standard signature-based methods. 

1.4 Structure of Our Article 

The remaining of the article is organized as follows: Section 2 offerings a detailed literature survey, followed by a explanation 

of the proposed method in Section 3. Section 4 presents the results section, while Section 5 concludes the article and outlines 

future work. 

2. SURVEY 

The IoT has transformed modern technology by allowing seamless connectivity between devices, systems, and services. 

Conversely, the rapid proliferation of interconnected devices also offerings important security challenges, including 

vulnerabilities to cyberattacks, data breaches, and privacy violations. This survey inspects new improvements, challenges, 

and emerging trends in IoT security, with a specific focus on authentication mechanisms, encryption protocols, intrusion 

diagnosis systems, and secure communication constructions. By addressing these critical problems, the survey aims to 
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proposal a whole overview of approaches to safeguard IoT methods, confirming reliable and resilient operations in an 

increasingly related world. 

Convolutional neural networks (CNNs) were recommended by Abu Al-Haija et al. [11] as the basis for generating a new, 

intelligent, and self-governing deep learning-based technique for identifying and categorising cyberattacks in Internet of 

Things communication networks. For effective parallel processing and fast calculation, their recommended method, the 

Internet of Things Intrusion Detection and Categorisation System using CNN (IoT-IDCS-CNN), creates utilize of powerful 

Intel i9-core CPUs and Nvidia GPUs utilizing Compute Unified Device Architecture (CUDA). The proposed IoT-IDCS-

CNN was measured using all of the most significant IoT-based attacks since the Network Security Laboratory-Knowledge 

Discovery Databases (NSL-KDD) dataset. Allowing to the simulation outcomes, the binary-class classifier's cyberattack 

association accuracy was over 99.3%, while the multiclass classifier's was over 98.2%. 

DL-based Early Stage Detection (DL-ESD) is a novel method created by Albishari et al. [12] utilising the IoT Routing Attack 

Dataset (IRAD) to improve routing attack detection. It integrates version number (VN), decreasing rank (DR), and hello 

flood (HF). The suggested model's training efficiency was evaluated utilizing binary organization approaches. Outperforming 

state-of-the-art studies, the method achieved 98.85% prediction accuracy, 97.50% precision, 98.33% recall, and a 97.01% 

F1-score. 

A new hierarchical adversarial attack generation method for GNN-based intrusion detection systems (IDS) in Internet of 

Things environments was presented by Zhou et al. [13]. By slightly altering critical components in the feature space, 

identified using salient graph technology, this method generates adversarial samples. To determine which IoT nodes were 

most vulnerable to assaults, a hierarchical node selection technique founded on random walks was also used. When these 

two techniques are combined, the detection accuracy of two cutting-edge GNN models decreases by 30%. 

An intrusion diagnosis system based on the Transformer model was proposed by Wang et al. [14]. This system learns 

contextual embeddings of network features through a self-attention mechanism, enabling it to handle together continuous 

and categorical features simultaneously. On the Tonne IoT dataset, the system demonstrated strong performance, succeeding 

an accuracy of 95.78% for multi-class organization and 97.95% for binary organization. 

Aktar and Nur [15] developed an automated botnet detection and organization algorithm for anomaly detection using the Rat 

Swarm Optimizer with Deep Learning (BDC-RSODL). The Rat Swarm Optimizer (RSO) technique is employed to identify 

features and pre-process network data. The RSO technique's capacity to handle high-dimensional data may limit this method's 

performance, even though it decreases the feature space and increases efficiency. Another powerful tool for identifying 

botnets is the Long Short-Term Memory (LSTM) methodology. 

Shukla et al. [16] introduction an RNN-FET model to analyze data and improve features by integrating FET with bidirectional 

LSTM. While this approach improves temporal feature analysis, the use of bidirectional LSTM can be computationally 

expensive and requires longer training time, especially in large-scale IoT networks. Despite the extremely high detection 

accuracy of these DL-based methods, their computational complexity may prevent them from being used on IoT devices 

with limited resources, which frequently call for lightweight solutions. 

To identify anomalies in real-time network traffic, Thota and Menaka proposed a method [17]. Their research used common 

criteria to distinguish between different DL and ML algorithms for botnet detection prior to analysing recently extracted 

packet-captured (pcap) files because the Aposemat IoT 23 dataset used gated recurrent units (GRUs) to identify malware 

threats. While this approach offers accurate threat diagnosis, its applicability to other types of attacks in IoT networks has 

not been thoroughly explored. 

Abdulkareem et al. [18] suggested a lightweight technique for diagnosis IoT network attacks. Their method reduced feature 

dimensionality by selecting eight key features using a filter strategy. A stacked ensemble learning model consisting of 

decision tree (DT), logistic regression (LR), and naïve Bayes (NB) was then trained using these structures, with the DT acting 

as the meta-learner. This technique succeeded an accuracy of 90.65% in identifying five different types of IoT network 

attacks. 

2.1 Research Gap 

The research gap in enhancing IoT security lies in addressing the increasing vulnerabilities of IoT devices as they proliferate 

across diverse applications, ranging from smart homes to critical infrastructure. Existing solutions often focus on isolated 

aspects, such as data encryption or access control, but fail to provide comprehensive, lightweight, and scalable security 

frameworks tailored to resource-constrained IoT devices. However, current approaches do not address the issue of 

adaptability to new threats and risks including those involving the use of artificial intelligence and zero-day threats. The 

current situation requires new comprehensive approaches based on the latest technologies, such as machine learning, 

blockchain, and real-time anomaly detection to achieve comprehensive and preventive IoT security. 

3. PROPOSED SYSTEM 

The complexity and dynamic nature of contemporary cyberthreats, particularly inside the Internet of Things environment, 

make it difficult for conventional intrusion detection systems (IDS) to handle, as this study demonstrates. The challenges of 
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guaranteeing high precision and real-time performance while maintaining data secrecy are highlighted by the expanding 

body of research. To address these challenges, this paper presents an innovative framework that integrates QFNNs - CRSD 

to enhance IoT security.  

Fig.1 illustrates the block diagram of the proposed model. The proposed diagram outlines a comprehensive IoT security 

framework aimed at enhancing protection against cyber threats. IoT devices, such as PCs, mobiles, and smart home systems, 

communicate with cloud computing and social media services, producing large amounts of data. However, attackers attempt 

to exploit susceptibilities in the IoT network. The data collected is pre-processed to safeguard quality and readiness for 

analysis. The QFNNs - CRSD form the core security mechanism, analyzing the data to detect anomalies and malicious 

activity. Finally, the system classifies threats, ensuring effective identification and mitigation of cyberattacks, safeguarding 

the IoT ecosystem. 

 

Figure 1: Block diagram of proposed technique 

 

3.1 Dataset 

The Australian Centre for Cyber Security's (ACCS) Cyber Range Lab's IXIA PerfectStorm tool produced the raw network 

packets that make up the UNSW-NB15 dataset. This dataset combines real, contemporary daily routines with synthetic, 

modern attack behaviors. Reconnaissance, shellcode, fuzzers, DoS, backdoors, worms, and exploits are among the nine attack 

methods that are included. Twelve algorithms were developed to produce the class label and 49 attributes using the Argus 

and Bro-IDS tools. Four CSV files include 2,540,044 records in total, of which 175,341 are in the training set and 82,332 are 

in the testing set [19]. Numerous research projects have made extensive use of the dataset for intrusion detection, privacy 

protection, threat intelligence, and network forensics across a variety of systems, such as SCADA, Industrial IoT, Network 

Systems, IoT, and Industry 4.0. 

3.2 Preprocessing 

For classification, the type of normalization must be preprocessed. The input data is normalized to accelerate the learning 

process. Data normalization could be necessary to handle numerical issues like accuracy loss from arithmetic errors. those 

with wide beginning ranges have the potential to dominate gradients, obscuring those with lesser ranges [20]. Feature space 
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normalizations is better understood as a kernel-based preparation method rather than a preprocessing step because it is not 

applied externally to input vectors. The gap between the greatest and smallest values in a typical attack, for example, can be 

as much as nine or 10 times in certain intrusion detection datasets. In this regard, normalizations functions as a special kernel 

mapping method that simplifies calculations by transforming data onto a more manageable plane. However, because so many 

data points are involved, sophisticated normalizations techniques can be computationally costly. This Min-Max 

normalizations technique is quick and effective. Min-Max standardization linearly converts the actual information m into the 

desired interval
( )max ,minnew new . 

( )
min

min max min
max min

x
new new new

x x

m
m

 −
= + −  

−                            (1) 

The technique's accuracy in preserving all relationships among the data points is one of its advantages. It does not distort the 

data in any way. 

3.3 Quantum Feedforward Neural Networks (QFNNs) 

The Internet of Things (IoT) faces increasing security challenges due to its distributed architecture and limited computational 

resources. Modern security mechanisms often struggle to balance robust protection with efficiency. QFNNs recommendation 

a novel method to developing IoT security by leveraging quantum computing principles for anomaly detection, encryption, 

and threat mitigation.  QFNNs integrate quantum operations into the structure of classical feedforward neural networks, 

harnessing quantum parallelism and entanglement to rise computational effectiveness and accuracy [21]. These networks are 

mainly effective for real-time IoT security tasks, such as diagnosis anomalies in system traffic, classifying malicious nodes, 

and management secure communications. 

Quantum State Representation: QFNNs encode classical data into quantum states to enable parallel processing. The 

quantum state 


of n -qubits is denoted as Eq.(2): 

2 1

0

n

i

i

i 
−

=

=
                                           (2) 

Where i  are complex amplitudes satisfying 

2
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0
1

n
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

−

=
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Quantum Gate Operations: Quantum gates transform input quantum states. For example, a single-qubit gate U  acting on 


modifies the state as Eq.(3): 

a b
U

c d






   
=    
                                             (3) 

Forward Propagation: QFNNs apply quantum gates to simulate classical feedforward layers. For a layer l , the quantum 

state transformation is in Eq.(4):   

( ) ( ) ( )1l l l
U 

+
=

                                    (4) 

Where 
( )l

U represents the quantum gate operations corresponding to layer l . 

Quantum Measurement: At the output layer, quantum measurement collapses the quantum state into classical probabilities. 

The probability of measuring state 
i

is in Eq.(5): 

( )
2

iP i =
                                             (5) 

Loss Function: To optimize the QFNN, a cost function such as the Mean Squared Error (MSE) is adapted for quantum states 

in Eq. (6). 
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( )
2

1

1 m

j j

j

L P y
m =

= −
                                       (6) 

Where jP
  is the predicted probability and jy

 is the true label. 

Gradient Descent in Quantum Context: Parameter updates are performed using hybrid quantum-classical techniques. 

( ) ( )
( )

1t t

t

L
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

+ 
= −

                                      (7) 

Where   represents trainable parameters like rotation angles in quantum gates. 

IoT Security Integration: For anomaly detection, the QFNN processes incoming IoT data streams encoded as quantum 

states. The outputs indicate whether a given data point deviates from normal behavior. 

( )
i anomalous states

Anomaly Score P i


= 
                              (8) 

QFNNs efficiently analyze large datasets, providing enhanced scalability and accuracy for IoT security applications. Future 

improvements in quantum hardware will further facilitate the real-time deployment of QFNN-based security systems. 

3.4 Contextual Rule-based Signature Detection (CRSD) 

CRSD is a security background designed to improve the protection of Internet of Things (IoT) devices by leveraging 

contextual information and rule-based signature detection mechanisms. This method associations traditional signature 

detection with contextual parameters (e.g., device type, operational environs, and communication patterns) to identify and 

mitigate security threats more effectively [22]. By incorporating context, CRSD increases the accuracy of intrusion detection 

systems (IDS), decreases false positives, and adapts to the dynamic nature of IoT environs. 

Contextual Awareness: Uses environmental and device-specific data to refine detection rules. 

Rule-based Mechanisms: Employments predefined rules to analyze IoT network traffic for malicious patterns. 

Dynamic Signature Adaptation: Updates signatures based on new threat intelligence and contextual alterations. 

Contextual Rule Representation: 

A contextual rule iR
 can be expressed as: 

 1 2, ,....,i mR C C C=
                                   (9) 

Where kC
  represents a contextual parameter such as: 

• 1C
 : Device type (e.g., sensor, actuator) 

• 2C
 : Network traffic characteristics (e.g., packet size, frequency) 

• 3C
 : Behavioral patterns (e.g., access time, usage frequency) 

Signature Matching Function: 

The signature detection estimates incoming network traffic T  against a set of signatures S : 

  

( )
1

,
0

if T matches S
M T S

otherwise


= 
                               (10) 

Contextual Rule Evaluation: 

The contextual rule detection function evaluates traffic T  with contextual parameters 
 1 2, ,..., mC C C

 as: 
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 ( )
1

,
0

k

k

if T satisfies all C
D T C

otherwise


= 
                               (11) 

CRSD Decision Function: 

The CRSD combines signature matching and contextual rule evaluation to detect threats. 

( )
( )  ( )1 , 1 , 1

0

kif M T S and D T C
CRSD T

otherwise

 = =
= 
                           (12) 

Threat Scoring Function: 

To rank potential threats, a threat score TS  can be calculated as: 

( ) ( )
1

m

k k

k

TS T w C T
=

= 
                                    (13) 

Where kw
  is the weight assigned to the importance of the k  -th contextual parameter, and 

( )kC T
 indicates whether the 

context is satisfied. 

By combining these equations, CRSD provides a robust and adaptive framework for IoT security. It not only detects threats 

using signatures but also incorporates contextual information to enhance detection precision and efficiency. Tab.1 shows the 

description of mathematical symbol. 

3.5 Advantages of proposed method 

• Utilizes QFNNs to process high-dimensional IoT data, enhancing precision in threat identification. 

• CRSD dynamically adapts detection rules to contextual parameters, reducing erroneous alerts. 

• QFNN's quantum-inspired computation accelerates processing, enabling faster response times. 

• CRSD adjusts to evolving IoT behaviors and network patterns, ensuring flexible threat detection. 

Table 1: Description of mathematical symbol 

Symbol Description 

kw
   

weight 

( )kC T
 

contextual parameter 

TS  threat score 

T  traffic 

 1 2, ,..., mC C C
 

contextual parameters 

S  signatures 

1C
 

Device type 

2C
 

Network traffic characteristics 

3C
 

Behavioral patterns 

iR
 

contextual rule 

   trainable parameters 



Suja Cherukullapurath Mana, Bhuvanesh Unhelkar, Siva Shankar Subramanian, G Nagarajan  

Page. 1501 

Advances in Consumer Research| Year: 2025 | Volume: 2 | Issue: 4 

 

jP
   

predicted probability 

jy
 

true label 

i
 

probability of measuring state 

( )l
U  

quantum gate  

l  layer 

U  single-qubit gate 

i   
complex amplitudes 

( )max ,minnew new  
Min-Max normalization 

 

4. RESULT AND DISCUSSION 

4.1 Experimental setup 

Initially, we used an HP notebook with an Intel Gen8 CPU and 12 GB of RAM to conduct the experiment for this study. 

Subsequently, for mobility, we transitioned the experiment to Google Colab. Python 3.10 was the programming language 

used, and the primary libraries utilized included easyfsl, sklearn, torch, numpy, pandas, matplotlib, and seaborn. 

4.2 Performance Metrics 

Specificity: The expected percentage of attractive instances is presented in Equation (14), which delivers the mathematical 

formula. 

N

N P

T
Spe

T F
=

+
                                                (14) 

Sensitivity: It shows the percentage of cases that were probable to fail. Equation (15) contains the corresponding 

mathematical formula. 

P

P N

T
Sen

T F
=

+
                                                  (15) 

Accuracy: Eq. (16) provides a quantitative expression for the percentage of cases that the model correctly anticipated. 

P N

P N N P

T T
Acc

T F T F

+
=

+ + +
                                         (16) 

Precision: A metric called precision measures the percentage of positive class predictions that turn out to be accurate. Refer 

to Equation (17) for the mathematical formula. 

Pr P

P P

T
ecision

T F
=

+
                                          (17) 

F-measure:  A single metric, called the F-single measure score, was created to achieve a balance between recall and precision 

constraints. Its mathematical formulation is presented in Eq. (18). 

2
1

2

P

P P N

T
F

T F F
=

+ +
                                  (18) 

False Positive Rate: Equation (19) illustrates the following mathematical formula, which represents the percentage of cases 

that are incorrectly labelled as negative rather than positive: 
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P

N P

F
FPR

T F
=

+
                                              (19) 

False Negative Rate: Equation (20) provides a mathematical expression for the percentage of cases mistakenly classified as 

positive when they should have been negative. 

N

P N

F
FNR

T F
=

+
                                           (20) 

Matthews’s correlation coefficient (MCC): The MCC is one of the most commonly used measures for classification 

accuracy. It is widely regarded as a fair metric that can be used even in cases where class sizes differ significantly. Equation 

(21) provides the definition of MCC. 

( ) ( )( )( )
P N P N

P P P N N P N N

T T F F
MCC

T F T F T F T F

−
=

+ − + + +
                          (21) 

Negative Positive Rate (FPR): It is the ratio of subjects who received a true negative diagnosis to all those who received a 

negative result. NPV represents the proportion of scenarios where every negative prediction was actually correct. Equation 

(22) provides the formula. 

N

N N

T
NPV

T F
=

+
                                               (22) 

False Positive Rate (FPR): The percentage of benign cases that are incorrectly labelled as malicious is known as the FPR. 

It evaluates the tendency of a detection system to raise false alarms. 

FP
FPR

FP TN
=

+                                         (23) 

False Negative Rate (FPR): The percentage of true positive cases (such as threats) that a detection system incorrectly 

classifies as negative (non-threats) is known as the False Negative Rate, or FNR. A high FNR indicates a failure to detect 

real threats, which could compromise system security. 

FN
FNR

FN TP
=

+                                          (24) 

4.3 Comparative methods 

QCCNN [23]: In terms of qubit count and circuit depth, QCNN outperforms contemporary noisy intermediate-scale quantum 

computers while preserving key characteristics of traditional CNNs, such as scalability and non-linearity. 

GRU [24]: Only the acquired weights are shared with the aggregation server, ensuring the privacy of local IoT device data 

in GRU models. 

CDW FedAvg [25]: In addition to implementing the CDW FedAvg technique, which considers the distance between positive 

and negative classes in each customer dataset, the proposed scheme ensures the accuracy of the customers' data. 

Res-QCNN [26]: The Res-QCNN outperforms the current model in learning a unitary function and demonstrates resilience 

to noisy data. 

Table 2: Comparative Analysis of Specificity and Sensitivity 

Models Specificity Sensitivity 

QCCNN 88.45 66.23 

GRU 70.12 87.23 

CDW FedAvg 78.34 69.91 

Res-QCNN 74.81 88.61 

Proposed 92.24 96.44 
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Figure 2: Comparative Analysis of Specificity and Sensitivity 

 

The comparative analysis of various models reveals distinct differences in specificity and sensitivity, as presented in Tab.2 

and Fig.2. The QCCNN model achieves a specificity of 88.45% but has a relatively lower sensitivity of 66.23%. The GRU 

model demonstrates a high sensitivity of 87.23% but exhibits lower specificity at 70.12%. The CDW FedAvg model provides 

balanced performance, with a specificity of 78.34% and a sensitivity of 69.91%. The Res-QCNN model performs well in 

sensitivity, achieving 88.61%, but its specificity is slightly lower at 74.81%. In contrast, the proposed method stands out with 

the uppermost specificity of 92.24% and an exceptional sensitivity of 96.44%, representing greater total performance. 

Table 3: Comparative Analysis of Performance Metrics 

Models Precision F-measure Accuracy 

QCCNN 81.98 62.91 87.34 

GRU 73.26 68.95 91.65 

CDW FedAvg 70.81 77.76 89.44 

Res-QCNN 89.91 90.65 93.98 

Proposed 93.45 94.54 98.91 

 

 

Figure 3: Comparative Analysis of Performance Metrics 
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The comparative evaluation of diverse models, highlighting their performance in terms of precision, F-measure, and 

accuracy, is presented in Tab.3 and Fig.3. The QCCNN model accomplishes a precision of 81.98%, an F-measure of 62.91%, 

and an accuracy of 87.34%. The GRU model establishes a higher accuracy of 91.65%, with a precision of 73.26% and an F-

measure of 68.95%. The CDW FedAvg model exhibits an F-measure of 77.76%, a precision of 70.81%, and an accuracy of 

89.44%. The Res-QCNN model excels in precision, reaching 89.91%, with an F-measure of 90.65% and an accuracy of 

93.98%. The proposed model surpasses all others, accomplishing the highest precision of 93.45%, an F-measure of 94.54%, 

and an impressive accuracy of 98.91%, representing its greater overall performance. 

Table 4: Comparative Analysis of FPR and FNR 

Models FPR FNR 

QCCNN 18.76 22.76 

GRU 19.45 25.76 

CDW FedAvg 20.55 26.91 

Res-QCNN 23.25 20.54 

Proposed 15.76 18.76 

 

 

Figure 4: Comparative Analysis of FPR and FNR 

 

Tab.4 and Fig.4 present a comparative analysis of models based on FPR and FNR, revealing varying levels of performance. 

The QCCNN model has an FPR of 18.76% and an FNR of 22.76%, while the GRU model shows slightly higher rates with 

an FPR of 19.45% and an FNR of 25.76%. The CDW FedAvg model performs likewise, with an FPR of 20.55% and an FNR 

of 26.91%. The Res-QCNN model exhibits a higher FPR of 23.25% but a lower FNR of 20.54%. Notably, the proposed 

model achieves the lowest FPR of 15.76% and FNR of 18.76%, standing out for its greater capability to reduction both false 

positives and false negatives. 

Table 5: Comparative Analysis of MCC and NPV 

Models MCC NPV 

QCCNN 77.21 69.91 

GRU 84.56 76.13 

CDW FedAvg 88.99 80.45 

Res-QCNN 92.34 83.45 

Proposed 96.44 90.88 
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Figure 5: Comparative Analysis of MCC and NPV 

 

Tab.5 and Fig.5 present the comparative evaluation of models based on MCC and NPV, highlighting notable differences in 

performance. The QCCNN model achieves an MCC of 77.21 and an NPV of 69.91%. The GRU model performs slightly 

better, with an MCC of 84.56 and an NPV of 76.13%. The CDW FedAvg model founds further improvement, accomplishing 

an MCC of 88.99 and an NPV of 80.45%. The Res-QCNN model excels with an MCC of 92.34 and an NPV of 83.45%. 

However, the proposed model outperforms all others, achieving the highest MCC of 96.44 and an NPV of 90.88, reflecting 

its exceptional predictive accuracy and reliability. 

Table 6: Throughput Analysis of Proposed Method 

Models Throughput 

QCCNN 876.76 

GRU 956.33 

CDW FedAvg 1276.65 

Res-QCNN 1345.98 

Proposed 1511.71 

 

 

Figure 6: Throughput Analysis of Proposed Method 

 

Tab.6 and Fig.6 present the throughput analysis of the proposed method, representative a important development over other 

models. The QCCNN model achieves a throughput of 876.76, while the GRU model performs slightly better with 956.33. 

The CDW FedAvg model exhibits a higher throughput of 1276.65, and the Res-QCNN model further developments with a 



Suja Cherukullapurath Mana, Bhuvanesh Unhelkar, Siva Shankar Subramanian, G Nagarajan  

Page. 1506 

Advances in Consumer Research| Year: 2025 | Volume: 2 | Issue: 4 

 

throughput of 1345.98. In comparison, the proposed technique outperforms all other models, accomplishing the highest 

throughput of 1511.71, highlighting its greater efficiency and performance in throughput analysis. 

4.4 Ablation Study 

Table 7: Ablation Study of Accuracy Comparison 

Models Accuracy 

Conventional Neural 

Networks 

89.45 

Standard Signature-based 

IDS 

79.45 

Proposed Framework 

(QFNN + CRSD) 

98.91 

 

 

Figure 7: Ablation Study of Accuracy Comparison 

 

Tab.7 and Fig.7 show the ablation study, highlighting the performance comparison between three models: Conventional 

Neural Networks, Standard Signature-based IDS, and the Proposed Framework (QFNN + CRSD). The results designate that 

the Proposed Framework achieves the highest accuracy of 98.91%, provocatively outperforming Conventional Neural 

Networks at 89.45% and Standard Signature-based IDS at 79.45%. This founds the greater efficacy of integrating QFNNs-

CRSD in improving detection accuracy and adaptability for IoT security. 

Table.8 Comparison of the proposed tehnique with the other models  

Author’s Security threat Validation dataset 

strategy 

Accuracy 

Almiani et al. [27] Network The NSL-KDD Dataset 94.27% 

Mohammadi et al. [28] Network The NSL-KDD Dataset 91.39% 

Basar et al. [29] Network TheUNSW-NB15Dataset 98.6% 

Thamilarasu et al. [30] Network The DDoS Dataset 98.7% 

Our Model Network UNSW-NB15 98.91% 
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Figure 8: Comparison of the proposed method with the other models 

 

Tab.8 and Fig.8 present a comparison of the proposed method with other models, representative its greater performance in 

addressing network security threats. Almiani et al. and Mohammadi et al. validated their methods utilizing the NSL-KDD 

dataset, achieving accuracies of 94.27% and 91.39%, correspondingly. Basar et al. utilized the UNSW-NB15 dataset, 

accomplishing an accuracy of 98.6%, while Thamilarasu et al. focused on the DDoS dataset, obtaining an accuracy of 98.7%. 

In contrast, our proposed model, validated utilizing the UNSW-NB15 dataset, achieves the highest accuracy of 98.91%. This 

underscores the efficiency and robustness of the proposed technique in handling problematic network security challenges. 

4.5 Limitations 

The proposed framework of QFNN in conjunction with CRSD brings considerable advancements in terms of accuracy, 

flexibility, and response time for IoT security. Nonetheless, it has some drawbacks. The utilize of quantum computation 

concepts may be an problem in terms of practical implementation because at the moment there is no mass quantum hardware. 

Furthermore, the contextual rule-based detection method requires a great deal of calibration and updating in order to be 

applied to new IoT settings. However, it is also significant to note that this assessment was done on a relatively small IoT 

network with a relatively simple and homogeneous threat landscape, and scaling this to larger and more complex IoT 

networks with different threat characteristics may need further tuning and validation. 

5. CONCLUSION 

The integration of QFNNs with CRSD as proposed means an important step in enhancing the security of IoT networks. As 

a result of the utilization of quantum principles in computation, QFNNs effectively enhance the performance of the detection 

accuracy and speed of high-dimensional data. To accomplish flexibility and accuracy, the CRSD module adapts to the 

contextual parameters such as device behaviour and network traffic. Experimental outcomes prove the effectiveness of this 

framework over the traditional methods and demonstrate better accuracy, fewer false alarms, and better compatibility with 

new threats. 

The future work will be aimed at extending the applicability of the framework in more complex and extensive IoT settings, 

as well as at its real-world testing in the edge and cloud infrastructures. However, the combination of quantum computing 

technologies into new advanced approaches of adaptive learning could be more effective. Some of the proposes for further 

research are: investigating the robustness of the proposed framework against new types of attack scenarios, and expanding 

the applicability of the proposed framework to cover multi-modal security threats in different IoT systems. 
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