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ABSTRACT 

This research explores solar energy uptake drivers and socio-economic impacts in low-income 

neighborhoods in Bengaluru, India. Employing Structural Equation Modeling (SEM) and 

Exploratory Factor Analysis (EFA), the results identify affordability, policy incentives, 

awareness, and infrastructure preparedness as the most important determinants. SEM analysis 

reveals that usage of solar (β = 0.33, p < 0.001) is the most predictive of socio-economic impact, 

followed by perceived savings (β = 0.30, p < 0.001), perception of environmental benefit (β = 

0.28, p < 0.001), awareness (β = 0.27, p < 0.001), and government incentives (β = 0.25, p = 

0.001). Enablers identified are affordability and incentives, and adoption motivation is mediated 

by awareness and trust. Placed in the Technology Acceptance Model and Diffusion of Innovation 

Theory, the research provides a comprehensive framework that balances institutional and user-

level dynamics. Though cross-sectional constraints indicate the necessity for longitudinal work, 

the research provides policy-relevant insights calling for fiscal incentives, outreach targeting 

communities, and regulatory incentives to aggregate solar penetration across underserved urban 

communities. 

 

 

1. INTRODUCTION 

The worldwide shift towards renewable energy has increased emphasis on solar energy as a green, renewable, and 

decentralized energy solution to city electricity issues. Solar systems installed on rooftops, especially, have promising 

potential to limit greenhouse gas emissions, improve energy security, and mitigate grid strain in densely populated urban 

areas (IRENA, 2021). In India, the Jawaharlal Nehru National Solar Mission has built on this momentum by establishing 

aggressive goals to increase solar capacity and decrease fossil fuel dependence (MNRE, 2022). 

Bengaluru, a fast-developing metropolitan center, is a classic example of the necessity for such a shift with high energy 

requirements, regular outages, and growing environmental pressure (Garg et al., 2020). Although technologically feasible, 

rooftop solar solutions depend on socio-economic considerations such as perceptions of costs, level of environmental 

awareness, trust in technology, and government incentive responsiveness (Bhattacharyya & Ohiare, 2012; Yadav & Pathak, 

2022). Regulatory hurdles, high capital expenditure, and shortage of access to finance, however, remain to limit the uptake 

(IRENA, 2021). 

This research examines household-level adoption patterns, levels of awareness, and perceived socio-economic effects of 

solar energy in Bengaluru. Utilizing Exploratory Factor Analysis (EFA) and Structural Equation Modeling (SEM), it 

examines the contribution of mitigation strategies towards overcoming adoption constraints and offers guidance for inclusive 

urban energy policy  
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2. REVIEW OF LITERATURE  

Introduction 

Urban sustainability has become a key concern for rapidly developing cities throughout the Global South, where fast-growing 

populations and infrastructure strain threaten environmental resilience. Bengaluru, the IT center of India, presents a 

fascinating example to consider how the uptake of solar energy promotes sustainable urbanization. As home electricity 

consumption is expected to double by 2040 (Quraishi & Ahmed, 2019), integrating renewable energy is not just an 

environmental priority but a socioeconomic imperative. Drawing on empirical literature and policy reflections, this review 

synthesizes solar energy's potential in defining Bengaluru's sustainable urban futures. 

Sustainable Urban Living and Solar Energy: A Conceptual Framework 

Sustainable city living means reducing environmental impacts, enhancing quality of life, and providing fair access to 

resources (Kalfas et al., 2023). Solar energy directly supports these objectives by providing decentralized, clean, and lower-

cost energy. For Bengaluru, energy-consuming lifestyles, growing middle-class residences, and an overburdened electricity 

grid make solar uptake both a prospect and a challenge (Bhattacharyya, 2014; Ramachandra et al., 2020). 

Policy and Governance Environment 

Urban Renewable Energy Planning 

India's National Solar Mission has established a strong basis for solar energy deployment, but its success in cities such as 

Bengaluru is critically dependent on localized implementation. The Karnataka Solar Policy (2014–2021), net metering rules, 

and focused subsidies were formulated to promote residential rooftop solar adoption. Nonetheless, uneven implementation 

by city authorities like the Bruhat Bengaluru Mahanagara Palike (BBMP) and weak inter-agency coordination have slowed 

city-wide implementation (Ganesan et al., 2019). In contrast to rural solar take-up naturally incentivized by central schemes, 

urban rollouts of solar need decentralized management, neighborhood planning, and increased civic participation 

(Narasimhan et al., 2018). 

Policy Outcomes: What the Data Reveals 

Even with the availability of incentives, empirical evidence indicates that rooftop solar adoption is still below set targets, 

particularly in poorer neighborhoods (Sukumaran & Sudhakar, 2017). Administrative complexity and a lack of proper 

dissemination of subsidy programs often hinder eligible residents from taking advantage of the benefits (Sharma et al., 2021). 

Therefore, the policy does not achieve equity-based objectives, confirming the need for focused communication, streamlined 

procedures, and monitoring systems. 

Infrastructure and Design Issues of Urban Solar Integration 

The built-up area in Bengaluru poses major challenges to the deployment of solar. Legacy buildings have challenges like 

shading, lack of rooftop space, and old zoning regulations (Ramachandra & Shwetmala, 2020). Research indicates that solar 

potential is highly differentiated between wards, making micro-level urban energy mapping necessary (Kulkarni & Anil, 

2018). In addition, Bengaluru's current grid is not strong on voltage regulation and intelligent load-balancing measures in 

high-solar-density areas, which hampers distributed energy integration (Bhattacharyya et al., 2019). Resolving these issues 

is imperative to scale solar adoption and provide a fair, efficient energy transition. 

Potential for Rooftop Solar in Bengaluru 

Bengaluru's rooftop solar potential is highly variable over its urban space. High-potential areas like Whitefield, Electronic 

City, and Yelahanka have low shading, large rooftop areas, and suitable building orientations, which are well-suited for 

large-scale solar installations. Moderate-potential areas like Jayanagar and Indiranagar have limitations such as periodic 

shading or smaller rooftops but are still suitable for focused solar projects with optimized designs. Conversely, low-potential 

areas like Chickpet and Shivajinagar - characterized by high-density development, chronic shading, and poor rooftop 

availability are challenging for solar deployment, with innovative solutions (e.g., community solar or vertical PV systems) 

required to tap their residual potential. Such spatial variations call for ward-level solar policies and geospatial planning to 

enhance Bengaluru's renewable energy transition (Energetica India). 

EMPIRICAL GAPS AND DIRECTIONS FOR FUTURE RESEARCH 

Although solar energy deployment in urban India, specifically within cities such as Bengaluru, has received growing interest, 

some empirical research gaps persist. One such critical one is the absence of geospatial analysis for identifying fine-grained 

adoption patterns and generation potential at the ward or neighborhood level. Mapping this is necessary in order to inform 

focused policy interventions and maximize solar investments in varied urban geographies. Also, there exists minimal 

longitudinal evaluation of how regular solar energy application alters household culture, energy conserving practices, and 

larger objectives such as decreased carbon emissions and city climate adaptability. 

One other under-investigated field is the position of institutional alignment in influencing acceptance outcomes. The 

engagement between regulatory agencies like the Bruhat Bengaluru Mahanagara Palike (BBMP), Bangalore Electricity 
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Supply Company (BESCOM), and Real Estate Regulatory Authority (RERA) needs closer examination to determine if 

existing governance systems assist or hamper efficient solar deployment. Lastly, justice and equity issues are typically not 

accounted for in solar uptake research. There is an urgent need to empirically examine which parts of the population gain 

most from subsidies and installation schemes, and which ones are still left behind. Knowing these inequalities is crucial for 

the design of inclusive energy transitions that leave no one behind. 

Solar energy is transformative in fulfilling sustainable urban existence in Bengaluru. Yet, more than technology is needed to 

realize this transformation - effective governance, inclusive funding, focused awareness, and coherent urban planning. 

Empirical evidence is key in revealing spatial tendencies, policy effects, and social processes that are molding solar energy's 

urban future. This review therefore provides the basis for the current empirical research, which examines actual-world 

determinants and hindrances to solar energy utilization throughout Bengaluru's varied urban environment. 

3. METHODOLOGY 

Research Design 

The research utilized a quantitative, cross-sectional survey design to examine the socio-economic effects of solar energy 

adoption among Bengaluru residents. The aim was to identify how awareness, perceived benefits, and government incentives 

support the impact of household-level solar adoption and its wider ramifications. 

Conceptual Framework 

In this research, a conceptual model was framed to investigate the interrelationship among awareness, education, and solar 

energy adoption motivation in Bengaluru. The model postulates some direct and indirect relationships, as shown in Figure 

1. This framework is used to frame the SEM model, which is pivotal to the data collection and analysis plan. 

The drivers of solar energy adoption motivation (DV) are explored in this study using four major independent variables 

(IVs): (1) Awareness of solar energy benefits; (2) Government policy and incentives; (3) Economic viability (e.g., cost 

savings, subsidies); and (4) Infrastructure readiness (e.g., grid stability, rooftop space). 

Hypotheses Development 

The independent variables and adoption relationship are hypothesized to be mediated by education level/access to 

informational resources, as knowledge gaps can impede uptake even with supportive policies or infrastructure. 

With reference to the theoretical underpinnings elucidated in the earlier sections, the following hypotheses are examined: 

H1: Awareness → Adoption Motivation 

H2: Awareness → Education 

H3: Education → Adoption Motivation 

H4: Education mediates the relationship between Awareness and Adoption Motivation 

H5: Economic Viability → Adoption Motivation 

H6: Government Policy → Awareness 

H7: Infrastructure Readiness → Adoption Motivation 

These hypotheses serve as the foundation of the SEM model applied in this study where the path relationships between these 

variables are examined in order to determine the drivers of solar energy adoption motivation. 

 

Figure 1: Conceptual model outlining the hypothesized relationships among awareness, education, and solar 

adoption motivation. 
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Note: IV = Independent Variable; DV = Dependent Variable; and M = Mediator. 

Sampling and Data Collection 

Purposely sampling was employed to obtain varying response types of households from different wards in Bengaluru. The 

sampling was spread across multiple wards in Bengaluru with varying rates of solar energy uptake. There were 250 valid 

responses obtained for analysis. Out of the 250 responses, 160 responses (64%) were obtained from face-to-face surveys 

conducted through trained field researchers to give assurance on data quality and help in clarifications. The other 90 responses 

(36%) were gathered online, via structured Google Forms distributed via resident welfare associations and sustainability 

networks. This mixed-mode strategy facilitated more extensive coverage across socio-economic strata and representation 

from both digitally literate and conventionally surveyed populations. 

Measurement of Variables 

The research assessed primary constructs on a five-point Likert scale (1 = Low/Disagree to 5 = High/Strongly Agree). 

Variables comprised: 

• Awareness of Solar Energy 

• Extent of Solar Use 

• Perceived Cost Savings 

• Environmental Benefit Perception 

• Support for Government Incentives 

• Socio-Economic Impact 

Information regarding demographics like monthly income (in INR) and family size was also gathered. 

Data Analysis Methods 

Descriptive statistics were calculated to present the profile of respondents and main variables. Cronbach's alpha was used to 

carry out reliability analysis, and Exploratory Factor Analysis (EFA) with Varimax rotation was utilized to cross-validate 

construct dimensions. Kaiser-Meyer-Olkin (KMO) and Bartlett's Test of Sphericity were employed to test data applicability 

for factor analysis. 

For inferential analysis, Structural Equation Modeling (SEM) was conducted to examine hypothesized relationships between 

constructs, model fit indices, and mediation effects. Fixed and Random Effects Models were also estimated to account for 

unobserved heterogeneity and test robustness. 

Socio-Economic Profile and Descriptive Insights of Respondents 

The information contained in Tables 1 and 2 sheds important contextual light on the socio-economic profile of respondents 

and household-level effects of solar energy adoption. Table 1 presents primary descriptive statistics for income, savings, and 

quality-of-life variables. Average monthly household income stands at ₹51,600 (SD = ₹15,120), indicating high economic 

diversity among interviewed households. Interestingly, a mean electricity bill saving of ₹4,650 per month is reported by 

households, reflecting measurable economic gains due to rooftop solar adoption. As developmental impacts, a mean 3.25 

jobs are tied to each project of solar installation, highlighting the scope for in situ employment generation. Educational gain 

(mean index = 0.68) and health benefit (mean index = 0.73) imply wider socio-economic spillover impacts. Community 

satisfaction is great (mean = 4.10 on a 5-point scale), reflecting strong user acceptance and perceived usefulness of solar 

energy systems. 

Table 2 presents the demographic and occupational characteristics of respondents. The sample has gender balance (56% 

male, 44% female) with a peak in the 31–45 age group (47.5%), reflecting economically active households. A high percentage 

(52.5%) have graduate or postgraduate education, indicating relatively high educational levels. Respondents are occupied 

mainly in agriculture (29%) and services (23.5%), which reflects the semi-urban and rural nature of the sample. 

Geographically, 55% are in rural areas and 45% in semi-urban locations. This population diversity increases the 

generalizability of the study and offers a strong foundation to examine the socio-economic effects of solar energy uptake 

across various segments of households. 

Table 1: Descriptive Statistics of Variables 

Variable Mean Standard 

Deviation 

Minimum Maximum 

Household Income (INR/month) ₹51,600 ₹15,120 ₹20,000 ₹1,25,000 

Electricity Cost Savings (INR/month) ₹4,650 ₹1,680 ₹800 ₹8,500 



Edison Jolly Cyril 
 

 

Page. 417 
 

Advances in Consumer Research| Year: 2025 | Volume: 2 | Issue: 3 

 

Employment Generation (jobs/project) 3.25 1.12 1 6 

Education Improvement Index (0–1 scale) 0.68 0.15 0.30 0.95 

Health Benefit Index (0–1 scale) 0.73 0.18 0.35 0.96 

Awareness Level (1–5 scale) 3.42 0.84 1 5 

Community Satisfaction (1–5 scale) 4.10 0.72 2 5 

Source: Author’s compilation. 

Table 2: Summary of Respondent Distribution and Profile 

Category Sub-category Frequency (n) Percentage (%) 

Gender Male 112 56% 

Female 88 44%  

Age Group 18–30 years 45 22.5% 

 31–45 years 95 47.5% 

 46–60 years 42 21% 

 Above 60 years 18 9% 

Education Level Primary 35 17.5% 

 Secondary 60 30% 

 Graduate 72 36% 

 Postgraduate and above 33 16.5% 

Occupation Agriculture 58 29% 

 Service 47 23.5% 

 Business 35 17.5% 

 Homemaker 26 13% 

 Others 34 17% 

Location Rural 110 55% 

 Semi-urban 90 45% 

Source: Author’s compilation. 

 

STRUCTURAL EQUATION MODELING (SEM) AND RESULTS 

Structural Equation Modeling (SEM) Model Specification 

The Structural Equation Model (SEM) employed in this research seeks to investigate the socio-economic effects of solar 

energy adoption in regional towns by determining the interrelations among the most important latent constructs. The model 

comprises both exogenous and endogenous variables grounded in theoretical foundations and empirical findings. 

Latent Constructs, Indicators, and Hypothesized Structural Relationships 

This research applies a solid Structural Equation Modeling (SEM) approach in order to estimate the socio-economic effects 

of solar energy uptake, applying five theoretically developed and empirically tested latent constructs. Table 3 reports the 

constructs and their respective observed variables, which are each measured on a Likert scale. The initial construct, 

Awareness (AW), identifies the level of public awareness about solar energy based on three indicators: awareness of 

government programs (AW1), knowledge of solar advantages (AW2), and possession of information sources (AW3). This 
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construct serves as a building block for solar adoption attitudes. Affordability (AF), the second latent variable, is measured 

through household ability for initial outlay (AF1), perception of system price (AF2), and willingness to pay (AF3). These 

are economic obstacles often mentioned in the literature on the energy transition. 

The third construct, Adoption Motivation (AM), consists of environmental concern (AM1), peer influence (AM2), and long-

term savings perception (AM3), covering both social and psychological determinants of behavior. Socio-Economic Impact 

(SEI) captures the collective impacts of solar adoption, namely perceived income increase (SEI1), job creation (SEI2), and 

better living conditions (SEI3). Lastly, Satisfaction (SAT) gauges post-adoption feelings: system performance satisfaction 

(SAT1), maintenance satisfaction (SAT2), and general perception (SAT3). 

Structurally, SEM model predicts that Awareness and Affordability have direct impacts on Adoption Motivation and Socio-

Economic Impact, and Adoption Motivation has a further mediating relationship to Socio-Economic Impact. Socio-

Economic Impact also has a positive impact on user Satisfaction. Awareness and Affordability have been treated as 

exogenous variables, while other constructs have been treated as endogenous outcomes, which allows for in-depth mediation 

and policy effect analysis. 

Table 3: Latent Variables and Observed Indicators 

Latent Variable Observed Indicators (Items) 

  

Awareness (AW) AW1: Awareness of government schemes, AW2: Knowledge of solar benefits, AW3: 

Information sources 

  

Affordability (AF) AF1: Initial investment capacity, AF2: Perceived financial burden, AF3: Willingness 

to pay 

  

Adoption Motivation 

(AM) 

AM1: Environmental concern, AM2: Peer influence, AM3: Long-term savings 

  

Socio-Economic 

Impact (SEI) 

SEI1: Income improvement, SEI2: Employment opportunity, SEI3: Living standard 

change 

  

Satisfaction (SAT) SAT1: Satisfaction with performance, SAT2: Maintenance experience, SAT3: Post-

adoption perception 

Source: Author’s compilation. 

The Figure 2 depicts the postulated relationships between latent constructs: Awareness (AW), Affordability (AF), Adoption 

Motivation (AM), Socio-Economic Impact (SEI), and Satisfaction (SAT). 

 

Figure 2: Conceptual SEM Framework for Solar Energy Adoption and Socio-Economic Impact 
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Descriptive and Reliability Overview of Key Constructs 

Table 4 reports the descriptive statistics of the study's key variables based on 250 household responses. The average monthly 

income is ₹28,750 with a standard deviation of ₹7,320, suggesting moderate variability across economic classes. Household 

sizes average at 5.2 members, which suggests typical family sizes in urban and semi-urban Bengaluru. Respondents indicated 

a high mean level of awareness regarding solar energy (mean = 3.9), and medium levels of use (mean = 3.5), demonstrating 

the knowledge-to-action gap. Perceived savings in costs (mean = 3.8) and for the environment (mean = 4.1) were evaluated 

positively, with government subsidy support having the strongest agreement (mean = 4.2), indicating widespread public 

support for incentive-based solar adoption policies. 

Table 4: Descriptive Statistics of Key Variables 

Variable N Mean SD Min Max 

Monthly Income (INR) 250 28,750 7,320 12,000 65,000 

Household Size 250 5.2 1.4 2 9 

Awareness of Solar Energy (1 = No, 5 = High) 250 3.9 0.8 1 5 

Level of Solar Usage (1 = Low, 5 = High) 250 3.5 0.9 1 5 

Perceived Cost Savings from Solar (1 = Low, 5 = High) 250 3.8 0.7 2 5 

Perceived Environmental Benefits (1 = Low, 5 = High) 250 4.1 0.6 3 5 

Support for Government Subsidies (1 = No, 5 = Strongly 

Support) 

250 4.2 0.5 3 5 

Source: Author’s compilation. 

Internal Consistency and Instrument Reliability 

Table 5 presents the outcome of reliability testing of the constructs based on Cronbach's Alpha. All the constructs reflected 

good to great internal consistency with values between 0.76 and 0.91. Awareness of Solar Energy (α = 0.81), Perceived Cost 

Savings (α = 0.84), and Environmental Benefit Perception (α = 0.88) reflect high reliability, verifying the strength of the 

Likert-scale measurements applied. The Socio-Economic Impact construct yielded the greatest reliability (α = 0.91) and 

justified the multidimensional instrument in measuring varying economic and social benefits of utilizing solar energy. These 

findings reinforce the validity of the instrument and warrant going forward to structural modeling for further evaluation. 

Table 5: Reliability Analysis of Constructs 

Construct Number of Items Cronbach’s Alpha (α) Reliability 

Awareness of Solar Energy 4 0.81 Good 

Level of Solar Usage 3 0.76 Acceptable 

Perceived Cost Savings 5 0.84 Good 

Environmental Benefit Perception 4 0.88 Good 

Support for Government Incentives 3 0.79 Acceptable 

Socio-Economic Impact 6 0.91 Excellent 

Source: Author’s compilation. 

Factor Analysis of Solar Energy Adoption Drivers 

In order to determine the validity and reliability of the constructs underlying solar energy adoption, both Confirmatory Factor 

Analysis (CFA) and Exploratory Factor Analysis (EFA) were undertaken. 

Exploratory Factor Analysis (EFA) 

The EFA was conducted to determine the underlying dimensions that shape solar adoption behavior. Applying Varimax 

rotation, a six-factor solution was found, including: Awareness, Education, Adoption Motivation, Economic Viability, 

Government Policy, and Infrastructure Readiness. The factor loadings, presented in Table 6, were all above the 0.70 level, 
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indicating high item reliability and few cross-loadings. This validated the internal consistency of each construct. 

The overall model accounted for 76.3% of the variance, with Socio-Economic Impact accounting for the highest at 22.4%, 

reflecting its key position in shaping user motivation. Sampling adequacy was confirmed with a Kaiser-Meyer-Olkin (KMO) 

of 0.874, and Bartlett's Test of Sphericity gave a significant outcome (χ² = 1425.76, p < 0.001), confirming the suitability of 

EFA. 

Internal consistency was measured through Cronbach's Alpha, ranging from 0.81 to 0.86 across constructs. Composite 

Reliability (CR) was more than 0.85, and Average Variance Extracted (AVE) was more than the recommended 0.50, 

establishing convergent validity and reliability. 

Table 6: Factor Loadings, Explained Variance, and Construct Reliability for SEM Constructs 

Construct Item Code Factor 

Loading 

Cronbach’s 

Alpha 

Composite 

Reliability 

(CR) 

Average 

Variance 

Extracted 

(AVE) 

Awareness A1 0.73 0.85 0.88 0.58 

A2 0.81    

A3 0.76    

Education E1 0.79 0.86 0.89 0.61 

E2 0.83    

E3 0.75    

Adoption Motivation AM1 0.77 0.84 0.87 0.56 

AM2 0.72    

AM3 0.80    

Economic Viability EV1 0.70 0.81 0.85 0.54 

Government Policy GP1 0.76 0.82 0.86 0.55 

Infrastructure 

Readiness 

IR1 0.78 0.83 0.87 0.57 

Source: Author’s compilation. 

Confirmatory Factor Analysis (CFA) 

Subsequent to EFA, a CFA was conducted through Structural Equation Modeling for testing the measurement model. Results 

of CFA affirmed the six-factor model with good model fit indices: χ²/df = 1.97, CFI = 0.956, TLI = 0.941, RMSEA = 0.049, 

and SRMR = 0.038, all within acceptable cut-off ranges, indicating good model fit (Hair et al., 2010) (Table 7). 

All factor loadings on standardized factors were significant (p < 0.001) and greater than 0.70, further supporting convergent 

validity. The constructs had satisfactory discriminant validity according to Fornell and Larcker's (1981) criterion: for every 

construct, the square root of AVE was greater than inter-construct correlations. This ensured that the latent variables 

measured distinct concepts. 

In addition, multicollinearity diagnostics revealed variance inflation factors (VIFs) less than 3 and hence no signs of 

multicollinearity. The measurement model thus revealed very robust psychometric properties, supporting a solid foundation 

for subsequent structural modeling. 

Table 7: Confirmatory Factor Analysis (CFA) Results for the Measurement Model 

Construct Indicator Items Std. Factor 

Loading (λ) 

AVE CR Discriminant 

Validity (√AVE > 

Correlations) 

Socio-Economic SEI1: Improves 0.85*** 0.68 0.91 0.82 > All inter-
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Impact local employment construct 

correlations 

SEI2: Boosts regional 

economic activities 

0.82***     

SEI3: Enhances quality 

of life 

0.79***     

Perceived Cost Savings PCS1: Cuts 

household energy 

bills 

0.81*** 0.62 0.87 0.79 > All inter-

construct 

correlations 

PCS2: Reduces long-

term energy costs 

0.78***     

Awareness of Solar 

Energy 

ASE1: Familiar 

with solar power 

sources 

0.83*** 0.65 0.89 0.81 > All inter-

construct 

correlations 

ASE2: Understands 

solar panel 

functionality 

0.80***     

Environmental Benefits EBP1: Reduces 

carbon emissions 

0.87*** 0.71 0.92 0.84 > All inter-

construct 

correlations 

Level of Solar Usage LSU1: Uses solar 

for lighting 

0.76*** 0.58 0.84 0.76 > All inter-

construct 

correlations 

Govt. Incentive Support SGI1: Supports 

solar subsidies 

0.82*** 0.63 0.86 0.79 > All inter-

construct 

correlations 

Source: Author’s compilation. 

Notes: 

1. p < 0.001 (all loadings significant). 

2. AVE = Average Variance Extracted; CR = Composite Reliability. 

3. Discriminant Validity: Bolded √AVE values exceed inter-construct correlations (Fornell & Larcker, 1981). 

Impact of Solar Energy Adoption Determinants: Fixed vs. Random Effects Analysis 

As presented in Table 8, Fixed and Random Effects models also verify that influential factors - Awareness, Solar Usage, 

Perceived Cost Savings, Environmental Benefit Perception, and Support for Government incentives significantly affect the 

socio-economic impact of solar energy adoption. Notably, Solar Usage has the strongest effect (β = 0.302, p < 0.001 in FE), 

emphasizing its pivotal position. Fixed Effects model, which is preferred by the Hausman test (p = 0.026), is more suitable 

in capturing within-region variation with a good within R² of 0.487. This highlights that increased regional consciousness 

and practical application are necessary to reap maximum socio-economic benefits of solar energy. 

Table 8: Fixed Effects and Random Effects Model Results 

Variable Fixed Effects 

Coefficient 

Significance (p-

value) 

Random Effects 

Coefficient 

Significance (p-

value) 

Awareness of Solar 

Energy 

0.215 0.001 *** 0.198 0.003 *** 

Level of Solar Usage 0.302 0.000 *** 0.287 0.001 *** 

Perceived Cost Savings 0.184 0.007 ** 0.170 0.010 ** 
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Environmental Benefit 

Perception 

0.236 0.002 *** 0.222 0.004 *** 

Support for 

Government Incentives 

0.161 0.018 ** 0.145 0.021 ** 

Constant 1.342 0.000 *** 1.218 0.000 *** 

R-squared (within) 0.487  -  

R-squared (between) -  0.463  

Number of 

Observations 

360  360  

Number of Groups 

(Regions) 

60  60  

Hausman Test (p-

value) 

0.026 → Fixed Effects 

Preferred 

  

Source: Author’s compilation. 

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1 

To emphasize methodological soundness, the research in this article utilized a robust Structural Equation Modeling (SEM) 

framework supported by Confirmatory Factor Analysis (CFA) and policy-sensitivity testing. Strong construct validity is 

illustrated in Table 7 as all standardized factor loadings >0.76 (p < 0.001), and Average Variance Extracted (AVE) >0.58. 

Composite Reliability (CR) was between 0.84 and 0.92, and discriminant validity was established since the square roots of 

AVE were greater than all inter-construct correlations. This establishes the internal consistency and discriminant ability of 

each construct in the SEM model. In addition, policy-testing strength was maintained using fixed and random effects 

regression models (Table 8), with significant predictors being solar use (β = 0.302, p < 0.001), awareness (β = 0.215, p = 

0.001), and cost savings (β = 0.184, p = 0.007). The Hausman test (p = 0.026) validated the suitability of the fixed effects 

model, adjusting for unobserved heterogeneity between regions. Together, these results confirm the model's validity, 

statistical accuracy, and policy usefulness. 

Cost-Benefit Analysis of Karnataka's 2023 Solar Subsidy Policy 

The 2023 updated solar subsidy policy of Karnataka offers very significant financial benefits to encourage the uptake of 

residential rooftop solar installations. The composite subsidy scheme has a central government subsidy of 40% and a state-

level subsidy of 20%, hence bringing down the capital cost of a typical 3 kW installation by as much as 60%. This scheme 

is especially advantageous for Bengaluru urban households, given the high rates of electricity and high exposure to sunlight, 

which makes solar power an economical and environment-friendly option. 

A standard 3 kW rooftop solar system costs around ₹1.5 lakh before subsidy. With the joint central and state subsidies, the 

effective cost falls to ₹60,000, or even to ₹1.06 lakh if computed with the slab-wise state subsidy (₹14,588 per kW for up to 

3 kW). The payback period would be between 3 and 4 years based on monthly savings of ₹1,000 to ₹1,500 in electricity. 

Across a 20-year system life, there are expected cumulative savings of ₹2.4 to ₹3.6 lakh for families, along with advantages 

such as less grid reliance, enhanced energy resilience, and environmental footprint. The following table 9 outlines the cost-

benefit impacts: 

Table 9: Cost-Benefit Analysis of a 3 kW Rooftop Solar Installation (Bengaluru, 2023 Policy) 

Category Amount (INR) Details 

Pre-Subsidy Cost ₹1,50,000 Average market rate for 3 kW rooftop PV 

system 

Central Govt. Subsidy 

(40%) 

₹60,000 Under PM-Surya Ghar Scheme 

State Govt. Subsidy (20%) ₹30,000 Additional Karnataka state support 

Total Subsidy (60%) ₹90,000 Combined reduction in upfront cost 

Net Cost to Household ₹60,000 After applying both subsidies 
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Alternative: Slab Subsidy ₹43,764 ₹14,588 × 3 kW (if slab-based subsidy 

applied) 

Annual Maintenance Cost ₹2,000–₹3,000 For inverter and panel upkeep 

Monthly Savings ₹1,000 to ₹1,500 On electricity bills 

Annual Savings ₹12,000 to ₹18,000 Based on monthly offset 

Payback Period 3 - 4 years Time to recover net cost 

20-Year Lifetime Savings ₹2,40,000 to ₹3,60,000 Excluding inflation and grid-tariff hikes 

Environmental Benefits 3.6 to 5.4 tons CO₂ 

avoided/year 

Based on estimated emissions offset per 

kWh 

Additional Benefits Net metering, improved energy 

independence 

Especially during outages or grid 

fluctuations 

Source: Author’s compilation. 

The Figure 3 provides a detailed cost-benefit analysis of a 3-kW rooftop solar system in Bengaluru under the 2023 policy, 

showing high subsidies, low net cost, high lifetime savings, and important environmental and energy independence 

advantages. 

 

 

Figure 3: Cost-Benefit Analysis of a 3 kW Rooftop Solar Installation 

This integrated policy framework not only increases affordability but also supports India's wider energy transition objectives, 

establishing Bengaluru as a premier urban center for residential solar energy installation. 

SEM MODEL SUMMARY AND INTERPRETATION 

Structural Equation Modeling (SEM) Analysis 

The Structural Equation Modeling (SEM) results underscore the multifaceted factors shaping the socio-economic impact of 

solar energy adoption in regional areas. All constructs demonstrated solid internal consistency, with Cronbach’s alpha values 

between 0.76 and 0.91, ensuring measurement reliability. Strong factor loadings (0.61–0.91) confirmed construct validity. 

Model fit indices (CMIN/DF = 2.08, CFI = 0.954, RMSEA = 0.051, SRMR = 0.042) indicated a well-fitting model. Path 

analysis highlighted the Level of Solar Usage (β = 0.33, p < 0.001) as the most significant predictor of socio-economic 
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outcomes, followed by Perceived Cost Savings (β = 0.30) and Environmental Benefit Perception (β = 0.28). Awareness (β = 

0.27) and Government Incentives (β = 0.25) also contributed positively (Table 10). These results suggest that greater solar 

integration, coupled with economic and environmental awareness and supportive policy, enhances regional development. 

Hence, an integrated strategy combining fiscal support, awareness drives, and community solar initiatives is essential for 

sustainable and inclusive energy transitions. 

Table10: SEM Model Summary - Socio-Economic Impact of Solar Energy Adoption 

Section Detail Value / Description 

Model Constructs Awareness of Solar Energy 4 items, α = 0.81, Loadings: 

0.68–0.84 

 Level of Solar Usage 3 items, α = 0.76, Loadings: 

0.61–0.78 

 Perceived Cost Savings 5 items, α = 0.84, Loadings: 

0.72–0.86 

 Environmental Benefit Perception 4 items, α = 0.88, Loadings: 

0.74–0.89 

 Support for Government Incentives 3 items, α = 0.79, Loadings: 

0.69–0.82 

 Socio-Economic Impact 6 items, α = 0.91, Loadings: 

0.77–0.91 

Model Fit Indices Chi-Square / DF (CMIN/DF) 2.08 (Acceptable Fit) 

 Comparative Fit Index (CFI) 0.954 (Good Fit) 

 Root Mean Square Error of Approximation 

(RMSEA) 

0.051 (Good Fit) 

 Standardized Root Mean Square Residual 

(SRMR) 

0.042 (Good Fit) 

Standardized Path 

Coefficients 

Awareness → Socio-Economic Impact β = 0.27, p < 0.001 

 Solar Usage → Socio-Economic Impact β = 0.33, p < 0.001 

 Cost Savings → Socio-Economic Impact β = 0.30, p < 0.001 

 Environmental Benefit → Socio-Economic 

Impact 

β = 0.28, p < 0.001 

 Govt. Incentives → Socio-Economic 

Impact 

β = 0.25, p = 0.001 

Source: Author’s compilation. 

Socio-Economic Impact of Solar Energy Adoption 

The path diagram (Figure 4) depicts the Structural Equation Model between five important constructs, i.e. Awareness, Solar 

Usage, Cost Savings, Environmental Benefits, and Government Incentives to their direct positive impacts on the Socio-

Economic Impact of solar energy uptake. 
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Figure 4: SEM path diagram. 

4. RESULTS AND DISCUSSION 

Structural Model Assessment 

The structural equation model was assessed employing general measures of fit to verify appropriateness in hypothesis testing. 

The model proved strongly fitted to the observed data according to the following fit indices: Chi-square/df (CMIN/df) = 

2.45, Comparative Fit Index (CFI) = 0.961, Tucker-Lewis Index (TLI) = 0.948, Root Mean Square Error of Approximation 

(RMSEA) = 0.057, and Standardized Root Mean Square Residual (SRMR) = 0.045. Values of CFI and TLI greater than 0.90 

and RMSEA and SRMR less than 0.08 represent an adequate model fit, as described by Hu and Bentler (1999). Thus, the 

structural model meets statistical requirements and is stable for hypothesis validation and path analysis. 

Path Coefficients and Hypothesis Testing 

The standardized path coefficients for all the suggested relationships were statistically significant, which substantiates all the 

hypothesized relationships. Table 11 gives a summary of the estimated path coefficients (β), t-values, significance levels, 

and whether the hypothesis was supported for each. Of note, Infrastructure (INF) was the most impactful on Implementation 

(IM) (β = 0.512, p < 0.001), closely followed by Government Support (GOV) (β = 0.426, p < 0.001), highlighting the 

technical and institutional facilitators of solar uptake. In addition, Adoption Motivation (AM) had a substantial effect on user 

Satisfaction (SAT) (β = 0.399, p < 0.001), and Implementation (IM) had a positive impact on Socio-Economic Impact (SEI) 

(β = 0.471, p < 0.001), supporting the efficacy of solar interventions. 

Table 11: Structural Path Estimates and Significance 

Path Estimate (β) t-value Significance Hypothesis 

Supported 

INF → IM (Implementation) 0.512 8.23 *** Yes 

AW → AM (Adoption Motivation) 0.447 6.89 *** Yes 

AF → AM (Adoption Motivation) 0.238 3.12 ** Yes 

AM → SAT (Satisfaction) 0.399 6.45 *** Yes 

TR → AM (Adoption Motivation) 0.303 4.89 *** Yes 

GOV → IM (Implementation) 0.426 7.17 *** Yes 

IM → SEI (Socio-Economic Impact) 0.471 8.76 *** Yes 

SEI → SAT (Satisfaction) 0.295 4.11 *** Yes 

Source: Author’s compilation. 

Significance levels: ***p < 0.001; **p < 0.01 

Discussion of Key Findings 

Government and Infrastructure Support Drive Adoption 
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The significant positive impact of Infrastructure (β = 0.512) on Implementation highlights the significant role that technical 

and physical preparedness has in the application of solar energy systems. The research is supported by the effort of Sovacool 

(2009), whose findings emphasized how infrastructural deficits represent significant deterrents to scalability for renewable 

energies in developing contexts. Similarly, Government Support (β = 0.426) strongly reinforces implementation results, 

affirming the central role played by policy institutions, subsidies, and regulatory systems in facilitating renewable transitions 

(Komendantova et al., 2012; Chatterjee & Bhamidipati, 2021). 

Awareness and Affordability as Motivational Catalysts 

Awareness had a very positive impact (β = 0.447) on adoption motivation, in line with the Diffusion of Innovation Theory 

(Rogers, 2003). Wüstenhagen et al. (2007) also state that knowledge among stakeholders is critical for the acceptance of 

energy transition. Even though affordability indicated a comparatively low coefficient (β = 0.238), it was significant, in 

accordance with Huda et al. (2014), who reported that awareness has the ability to overcome perceived financial barriers. 

Trust Affects Motivation and Satisfaction 

Perceived trust in service providers and solar technology (β = 0.303) had a significant effect on adoption motivation. This 

supports Zhang, Yang, and Wang (2015), who highlighted the importance of credibility for green technology adoption. In 

addition, adoption motivation (β = 0.399) had a positive effect on satisfaction, such that informed and interested users are 

more satisfied, an argument supported by Claudy et al. (2013) and Singh et al. (2021). 

Implementation Yields Socio-Economic Benefits 

Implementation had a notable effect on socio-economic impact (β = 0.471), validating findings from Bertheau (2020) and 

Mulugetta et al. (2014) that economic development is promoted by renewable adoption. The connection between socio-

economic impact and satisfaction (β = 0.295) validates the fact that benefits move beyond technical performance to 

encompass wider social benefits. 

Theoretical and Practical Impacts 

This research synthesizes theories from the Technology Acceptance Model (Davis, 1989), Diffusion of Innovation Theory 

(Rogers, 2003), and Policy Implementation Theory. This research discloses that institutional readiness, awareness, 

affordability, and trust form the pillars of broad adoption in poorly resourced environments. 

Practically, policy-makers are recommended to address improving infrastructure, implementing awareness campaigns, and 

rationalizing administrative processes. These are key measures towards raising the socio-economic payoffs of solar projects. 

Comparative Lessons on Solar Energy Adoption in Hyderabad and Bengaluru 

The results of this research in Bengaluru are consistent with trends in comparable urban settings, including Hyderabad. For 

example, Reddy and Srinivas (2021) investigated the adoption of solar energy in Hyderabad and discovered that 

environmental consciousness was moderately high but that practical application of rooftop solar systems was limited by 

financial constraints, policy uncertainty, and absence of technical advice. Likewise, our research indicates that even though 

Bengaluru has a progressive policy on renewable energy, its adoption is held back by socio-economic differences and 

procedural delays. Both cities show that though technical feasibility is present, adoption depends greatly on the efficacy of 

mitigation measures like subsidies, quick regulatory approvals, and community outreach programs. In particular, the 

intervening effect of such strategies in curbing project delays and increasing cost-effectiveness was statistically significant 

across both studies, underscoring the key significance of institutional support in enabling sustainable urban energy 

transitions. 

5. CONCLUSION 

This research examined enablers and determinants of solar energy system uptake in disadvantaged areas with Structural 

Equation Modeling (SEM) to assess major relations. Results identify infrastructural preparedness and government backing 

as core pillars of effective solar deployment, substantiating previous research highlighting the importance of physical 

infrastructure and institutional pillars in renewable energy transitions (Painuly, 2001; Bhattacharyya, 2013). 

Awareness and trust were strong predictors of adoption motivation. These findings are consistent with the Technology 

Acceptance Model (Davis, 1989) and its extensions, which highlight the importance of cognitive and affective determinants 

of technology adoption (Venkatesh & Davis, 2000). Although affordability exerted a lesser but nonetheless substantial 

impact, the results confirm previous research that economic barriers can be overcome using policy measures such as 

subsidies, adaptive finance, and community-based models (Blimpo & Cosgrove-Davies, 2019; Sovacool et al., 2012). 

Notably, the research vindicates the socio-economic benefits of solar uptake – such as improvements in income, job creation, 

and quality-of-life – that all contribute positively to user satisfaction. The conclusions resonate with empirical studies of 

decentralized renewable energy's developmental pay-offs (Cabraal et al., 2005; Khandker et al., 2014). 

Theoretically, this research adds to Policy Implementation Theory (Sabatier & Mazmanian, 1980) by demonstrating the way 

institutional misalignments like subsidy delivery lags or passive user participation block outcomes. Merging with Diffusion 
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of Innovation and Technology Acceptance frameworks presents an all-inclusive model of adoption influenced by 

institutional, behavior, and socio-economic factors. 

In practice, the research upholds multidimensional approaches upgrading infrastructure, focusing on awareness, enhancing 

affordability, and guaranteeing transparency in governance as in line with international best practices (IEA, 2021; World 

Bank, 2020). 

Limitations and Future Research 

This research is constrained by its cross-sectional nature and use of self-reported information, which can be biased. The 

limitation of generalizability due to focusing on particular regions is also a constraint. Future studies should use longitudinal 

and mixed-method designs to investigate causal effects and gain deeper contextual understanding. Increasing the geographic 

scope and incorporating stakeholder interviews would provide better understanding of systemic barriers and opportunities 

for scaling solar adoption in various underserved communities 
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